ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-layer network model to assess school opening policies during the COVID-19 vaccination campaign

67   0   0.0 ( 0 )
 نشر من قبل Christian Bongiorno
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a multi-layer network model for the spread of COVID-19 that accounts for interactions within the family, between schoolmates, and casual contacts in the population. We utilize the proposed model-calibrated on epidemiological and demographic data-to investigate current questions concerning the implementation of non-pharmaceutical interventions (NPIs) during the vaccination campaign. Specifically, we consider scenarios in which the most fragile population has already received the vaccine, and we focus our analysis on the role of schools as drivers of the contagions and on the implementation of targeted intervention policies oriented to children and their families. We perform our analysis by means of a campaign of Monte Carlo simulations. Our findings suggest that, in a phase with NPIs enacted but in-person education, children play a key role in the spreading of COVID-19. Interestingly, we show that childrens testing might be an important tool to flatten the epidemic curve, in particular when combined with enacting temporary online education for classes in which infected students are detected. Finally, we test a vaccination strategy that prioritizes the members of large families and we demonstrate its good performance. We believe that our modeling framework and our findings could be of help for public health authorities for planning their current and future interventions, as well as to increase preparedness for future epidemic outbreaks.



قيم البحث

اقرأ أيضاً

We analyze an epidemic model on a network consisting of susceptible-infected-recovered equations at the nodes coupled by diffusion using a graph Laplacian. We introduce an epidemic criterion and examine different vaccination/containment strategies: w e prove that it is most effective to vaccinate a node of highest degree. The model is also useful to evaluate deconfinement scenarios and prevent a so-called second wave. The model has few parameters enabling fitting to the data and the essential ingredient of importation of infected; these features are particularly important for the current COVID-19 epidemic.
Population-wide vaccination is critical for containing the SARS-CoV-2 (Covid-19) pandemic when combined with restrictive and prevention measures. In this study, we introduce SAIVR, a mathematical model able to forecast the Covid-19 epidemic evolution during the vaccination campaign. SAIVR extends the widely used Susceptible-Infectious-Removed (SIR) model by considering the Asymptomatic (A) and Vaccinated (V) compartments. The model contains several parameters and initial conditions that are estimated by employing a semi-supervised machine learning procedure. After training an unsupervised neural network to solve the SAIVR differential equations, a supervised framework then estimates the optimal conditions and parameters that best fit recent infectious curves of 27 countries. Instructed by these results, we performed an extensive study on the temporal evolution of the pandemic under varying values of roll-out daily rates, vaccine efficacy, and a broad range of societal vaccine hesitancy/denial levels. The concept of herd immunity is questioned by studying future scenarios which involve different vaccination efforts and more infectious Covid-19 variants.
The COVID-19 pandemic poses challenges for continuing economic activity while reducing health risks. While these challenges can be mitigated through testing, testing budget is often limited. Here we study how institutions, such as nursing homes, shou ld utilize a fixed test budget for early detection of an outbreak. Using an extended network-SEIR model, we show that given a certain budget of tests, it is generally better to test smaller subgroups of the population frequently than to test larger groups but less frequently. The numerical results are consistent with an analytical expression we derive for the size of the outbreak at detection in an exponential spread model. Our work provides a simple guideline for institutions: distribute your total tests over several batches instead of using them all at once. We expect that in the appropriate scenarios, this easy-to-implement policy recommendation will lead to earlier detection and better mitigation of local COVID-19 outbreaks.
105 - K. Choi , Hoyun Choi , 2020
The Covid-19 pandemic is ongoing worldwide, and the damage it has caused is unprecedented. For prevention, South Korea has adopted a local quarantine strategy rather than a global lockdown. This approach not only minimizes economic damage, but it als o efficiently prevents the spread of the disease. In this work, the spread of COVID-19 under local quarantine measures is modeled using the Susceptible-Exposed-Infected-Recovered model on complex networks. In this network approach, the links connected to isolated people are disconnected and then reinstated when they are released. This link dynamics leads to time-dependent reproduction number. Numerical simulations are performed on networks with reaction rates estimated from empirical data. The temporal pattern of the cumulative number of confirmed cases is then reproduced. The results show that a large number of asymptomatic infected patients are detected as they are quarantined together with infected patients. Additionally, possible consequences of the breakdowns of local quarantine measures and social distancing are considered.
In a world being hit by waves of COVID-19, vaccination is a light on the horizon. However, the roll-out of vaccination strategies and their influence on the pandemic are still open problems. In order to compare the effect of various strategies propos ed by the World Health Organization and other authorities, a previously developed SEIRS stochastic model of geographical spreading of the virus is extended by adding a compartment for vaccinated people. The parameters of the model were fitted to describe the pandemic evolution in Argentina, Mexico and Spain to analyze the effect of the proposed vaccination strategies. The mobility parameters allow to simulate different social behaviors (e.g. lock-down interventions). Schemes in which vaccines are applied homogeneously in all the country, or limited to the most densely-populated areas, are simulated and compared. The second strategy is found to be more effective. Moreover, under the current global shortage of vaccines, it should be remarked that immunization is enhanced when mobility is reduced. Additionally, repetition of vaccination campaigns should be timed considering the immunity lapse of the vaccinated (and recovered) people. Finally, the model is extended to include the effect of isolation of detected positive cases, shown to be important to reduce infections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا