ترغب بنشر مسار تعليمي؟ اضغط هنا

Covid-19 epidemic under the K-quarantine model: Network approach

106   0   0.0 ( 0 )
 نشر من قبل KwangJong Choi
 تاريخ النشر 2020
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Covid-19 pandemic is ongoing worldwide, and the damage it has caused is unprecedented. For prevention, South Korea has adopted a local quarantine strategy rather than a global lockdown. This approach not only minimizes economic damage, but it also efficiently prevents the spread of the disease. In this work, the spread of COVID-19 under local quarantine measures is modeled using the Susceptible-Exposed-Infected-Recovered model on complex networks. In this network approach, the links connected to isolated people are disconnected and then reinstated when they are released. This link dynamics leads to time-dependent reproduction number. Numerical simulations are performed on networks with reaction rates estimated from empirical data. The temporal pattern of the cumulative number of confirmed cases is then reproduced. The results show that a large number of asymptomatic infected patients are detected as they are quarantined together with infected patients. Additionally, possible consequences of the breakdowns of local quarantine measures and social distancing are considered.



قيم البحث

اقرأ أيضاً

94 - Matuv{s} Medo 2020
We study the epidemic spreading on spatial networks where the probability that two nodes are connected decays with their distance as a power law. As the exponent of the distance dependence grows, model networks smoothly transition from the random net work limit to the regular lattice limit. We show that despite keeping the average number of contacts constant, the increasing exponent hampers the epidemic spreading by making long-distance connections less frequent. The spreading dynamics is influenced by the distance-dependence exponent as well and changes from exponential growth to power-law growth. The observed power-law growth is compatible with recent analyses of empirical data on the spreading of COVID-19 in numerous countries.
We analyze an epidemic model on a network consisting of susceptible-infected-recovered equations at the nodes coupled by diffusion using a graph Laplacian. We introduce an epidemic criterion and examine different vaccination/containment strategies: w e prove that it is most effective to vaccinate a node of highest degree. The model is also useful to evaluate deconfinement scenarios and prevent a so-called second wave. The model has few parameters enabling fitting to the data and the essential ingredient of importation of infected; these features are particularly important for the current COVID-19 epidemic.
67 - Zezhun Chen 2020
In this paper, we propose a continuous-time stochastic intensity model, namely, two-phase dynamic contagion process(2P-DCP), for modelling the epidemic contagion of COVID-19 and investigating the lockdown effect based on the dynamic contagion model i ntroduced by Dassios and Zhao (2011). It allows randomness to the infectivity of individuals rather than a constant reproduction number as assumed by standard models. Key epidemiological quantities, such as the distribution of final epidemic size and expected epidemic duration, are derived and estimated based on real data for various regions and countries. The associated time lag of the effect of intervention in each country or region is estimated. Our results are consistent with the incubation time of COVID-19 found by recent medical study. We demonstrate that our model could potentially be a valuable tool in the modeling of COVID-19. More importantly, the proposed model of 2P-DCP could also be used as an important tool in epidemiological modelling as this type of contagion models with very simple structures is adequate to describe the evolution of regional epidemic and worldwide pandemic.
Coronavirus disease 2019 (CoViD-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among many symptoms, cough, fever and tiredness are the most common. People over 60 years old and with associated com orbidities are most likely to develop a worsening health condition. This paper proposes a non-integer order model to describe the dynamics of CoViD-19 in a standard population. The model incorporates the reinfection rate in the individuals recovered from the disease. Numerical simulations are performed for different values of the order of the fractional derivative and of reinfection rate. The results are discussed from a biological point of view.
A generalisation of the Susceptible-Infectious model is made to include a time-dependent transmission rate, which leads to a close analytical expression in terms of a logistic function. The solution can be applied to any continuous function chosen to describe the evolution of the transmission rate with time. Taking inspiration from real data of the Covid-19, for the case of cumulative confirmed positives and deaths, we propose an exponentially decaying transmission rate with two free parameters, one for its initial amplitude and another one for its decaying rate. The resultant time-dependent SI model, which under extra conditions recovers the standard Gompertz functional form, is then compared with data from selected countries and its parameters fit using Bayesian inference. We make predictions about the asymptotic number of confirmed positives and deaths, and discuss the possible evolution of the disease in each country in terms of our parametrisation of the transmission rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا