ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deep Learning Approach for Active Anomaly Detection of Extragalactic Transients

229   0   0.0 ( 0 )
 نشر من قبل V. Ashley Villar
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a shortage of multi-wavelength and spectroscopic followup capabilities given the number of transient and variable astrophysical events discovered through wide-field, optical surveys such as the upcoming Vera C. Rubin Observatory. From the haystack of potential science targets, astronomers must allocate scarce resources to study a selection of needles in real time. Here we present a variational recurrent autoencoder neural network to encode simulated Rubin Observatory extragalactic transient events using 1% of the PLAsTiCC dataset to train the autoencoder. Our unsupervised method uniquely works with unlabeled, real time, multivariate and aperiodic data. We rank 1,129,184 events based on an anomaly score estimated using an isolation forest. We find that our pipeline successfully ranks rarer classes of transients as more anomalous. Using simple cuts in anomaly score and uncertainty, we identify a pure (~95% pure) sample of rare transients (i.e., transients other than Type Ia, Type II and Type Ibc supernovae) including superluminous and pair-instability supernovae. Finally, our algorithm is able to identify these transients as anomalous well before peak, enabling real-time follow up studies in the era of the Rubin Observatory.



قيم البحث

اقرأ أيضاً

206 - Iftach Sadeh 2019
The next generation of observatories will facilitate the discovery of new types of astrophysical transients. The detection of such phenomena, whose characteristics are presently poorly constrained, will hinge on the ability to perform blind searches. We present a new algorithm for this purpose, based on deep learning. We incorporate two approaches, utilising anomaly detection and classification techniques. The first is model-independent, avoiding the use of background modelling and instrument simulations. The second method enables targeted searches, relying on generic spectral and temporal patterns as input. We compare our methodology with the existing approach to serendipitous detection of gamma-ray transients. The algorithm is shown to be more robust, especially for non-trivial spectral features. We use our framework to derive the detection prospects of low-luminosity gamma-ray bursts with the upcoming Cherenkov Telescope Array. Our method is an unbiased, completely data-driven approach for multiwavelength and multi-messenger transient detection.
117 - Iftach Sadeh 2019
The next generation of observatories will facilitate the discovery of new types of astrophysical transients. The detection of such phenomena, whose characteristics are presently poorly constrained, will hinge on the ability to perform blind searches. We present a new algorithm for this purpose, based on deep learning. We incorporate two approaches, utilising anomaly detection and classification techniques. The first is model-independent, avoiding the use of background modelling and instrument simulations. The second method enables targeted searches, relying on generic spectral and temporal patterns as input. We compare our methodology with the existing approach to serendipitous detection of gamma-ray transients. We use our framework to derive the detection prospects of low-luminosity gamma-ray bursts with the upcoming Cherenkov Telescope Array. Our method is an unbiased, data-driven approach for multiwavelength and multi-messenger transient detection.
The recent increase in volume and complexity of available astronomical data has led to a wide use of supervised machine learning techniques. Active learning strategies have been proposed as an alternative to optimize the distribution of scarce labeli ng resources. However, due to the specific conditions in which labels can be acquired, fundamental assumptions, such as sample representativeness and labeling cost stability cannot be fulfilled. The Recommendation System for Spectroscopic follow-up (RESSPECT) project aims to enable the construction of optimized training samples for the Rubin Observatory Legacy Survey of Space and Time (LSST), taking into account a realistic description of the astronomical data environment. In this work, we test the robustness of active learning techniques in a realistic simulated astronomical data scenario. Our experiment takes into account the evolution of training and pool samples, different costs per object, and two different sources of budget. Results show that traditional active learning strategies significantly outperform random sampling. Nevertheless, more complex batch strategies are not able to significantly overcome simple uncertainty sampling techniques. Our findings illustrate three important points: 1) active learning strategies are a powerful tool to optimize the label-acquisition task in astronomy, 2) for upcoming large surveys like LSST, such techniques allow us to tailor the construction of the training sample for the first day of the survey, and 3) the peculiar data environment related to the detection of astronomical transients is a fertile ground that calls for the development of tailored machine learning algorithms.
Anomaly detection in videos is a problem that has been studied for more than a decade. This area has piqued the interest of researchers due to its wide applicability. Because of this, there has been a wide array of approaches that have been proposed throughout the years and these approaches range from statistical-based approaches to machine learning-based approaches. Numerous surveys have already been conducted on this area but this paper focuses on providing an overview on the recent advances in the field of anomaly detection using Deep Learning. Deep Learning has been applied successfully in many fields of artificial intelligence such as computer vision, natural language processing and more. This survey, however, focuses on how Deep Learning has improved and provided more insights to the area of video anomaly detection. This paper provides a categorization of the different Deep Learning approaches with respect to their objectives. Additionally, it also discusses the commonly used datasets along with the common evaluation metrics. Afterwards, a discussion synthesizing all of the recent approaches is made to provide direction and possible areas for future research.
We present the first evidence that adaptive learning techniques can boost the discovery of unusual objects within astronomical light curve data sets. Our method follows an active learning strategy where the learning algorithm chooses objects which ca n potentially improve the learner if additional information about them is provided. This new information is subsequently used to update the machine learning model, allowing its accuracy to evolve with each new information. For the case of anomaly detection, the algorithm aims to maximize the number of scientifically interesting anomalies presented to the expert by slightly modifying the weights of a traditional Isolation Forest (IF) at each iteration. In order to demonstrate the potential of such techniques, we apply the Active Anomaly Discovery (AAD) algorithm to 2 data sets: simulated light curves from the PLAsTiCC challenge and real light curves from the Open Supernova Catalog. We compare the AAD results to those of a static IF. For both methods, we performed a detailed analysis for all objects with the ~2% highest anomaly scores. We show that, in the real data scenario, AAD was able to identify ~80% more true anomalies than the IF. This result is the first evidence that AAD algorithms can play a central role in the search for new physics in the era of large scale sky surveys.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا