ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine learning based in situ quality estimation by molten pool condition-quality relations modeling using experimental data

74   0   0.0 ( 0 )
 نشر من قبل Noopur Dilip Jamnikar
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The advancement of machine learning promises the ability to accelerate the adoption of new processes and property designs for metal additive manufacturing. The molten pool geometry and molten pool temperature are the significant indicators for the final parts geometric shape and microstructural properties for the Wire-feed laser direct energy deposition process. Thus, the molten pool condition-property relations are of preliminary importance for in situ quality assurance. To enable in situ quality monitoring of bead geometry and characterization properties, we need to continuously monitor the sensors data for molten pool dimensions and temperature for the Wire-feed laser additive manufacturing (WLAM) system. We first develop a machine learning convolutional neural network (CNN) model for establishing the correlations from the measurable molten pool image and temperature data directly to the geometric shape and microstructural properties. The multi-modality network receives both the camera image and temperature measurement as inputs, yielding the corresponding characterization properties of the final build part (e.g., fusion zone depth, alpha lath thickness). The performance of the CNN model is compared with the regression model as a baseline. The developed models enable molten pool condition-quality relations mapping for building quantitative and collaborative in situ quality estimation and assurance framework.

قيم البحث

اقرأ أيضاً

Wire-feed laser additive manufacturing (WLAM) is gaining wide interest due to its high level of automation, high deposition rates, and good quality of printed parts. In-process monitoring and feedback controls that would reduce the uncertainty in the quality of the material are in the early stages of development. Machine learning promises the ability to accelerate the adoption of new processes and property design in additive manufacturing by making process-structure-property connections between process setting inputs and material quality outcomes. The molten pool dimensional information and temperature are the indicators for achieving the high quality of the build, which can be directly controlled by processing parameters. For the purpose of in situ quality control, the process parameters should be controlled in real-time based on sensed information from the process, in particular the molten pool. Thus, the molten pool-process relations are of preliminary importance. This paper analyzes experimentally collected in situ sensing data from the molten pool under a set of controlled process parameters in a WLAM system. The variations in the steady-state and transient state of the molten pool are presented with respect to the change of independent process parameters. A multi-modality convolutional neural network (CNN) architecture is proposed for predicting the control parameter directly from the measurable molten pool sensor data for achieving desired geometric and microstructural properties. Dropout and regularization are applied to the CNN architecture to avoid the problem of overfitting. The results highlighted that the multi-modal CNN, which receives temperature profile as an external feature to the features extracted from the image data, has improved prediction performance compared to the image-based uni-modality CNN approach.
Wire-feed laser additive manufacturing is an emerging fabrication technique capable of highly automated large-scale volume production that can reduce both material waste and overall cost while improving product lead times. Quality assurance is necess ary for implementation into critical structural applications. However, the large number of process variables along with the cost associated with traditional trial and error methods makes this difficult. This study investigates a comprehensive quality framework based on learning from experimental data that will enable improved quality control along with consistent microstructural features of the part. Specifically, a comprehensive experimental data across multiple process variables and output characteristics in terms of overall bead quality, geometric shape (i.g. bead height, width, fusion zone depth, etc.), and microstructural features are collected. The predicted process-geometry-microstructure relations are then captured by virtue of data-driven machine learning models. The properties of printed beads are visualized based on an extensive range of processing space within a 3-dimensional contour map. The insights and impacts of process variables on bead morphology, geometric and microstructural features are comprehensively investigated for quality improvement during manufacturing processes.
Estimating health benefits of reducing fossil fuel use from improved air quality provides important rationales for carbon emissions abatement. Simulating pollution concentration is a crucial step of the estimation, but traditional approaches often re ly on complicated chemical transport models that require extensive expertise and computational resources. In this study, we develop a novel and succinct machine learning framework that is able to provide precise and robust annual average fine particle (PM2.5) concentration estimations directly from a high-resolution fossil energy use data set. The accessibility and applicability of this framework show great potentials of machine learning approaches for integrated assessment studies. Applications of the framework with Chinese data reveal highly heterogeneous health benefits of reducing fossil fuel use in different sectors and regions in China with a mean of $34/tCO2 and a standard deviation of $84/tCO2. Reducing rural and residential coal use offers the highest co-benefits with a mean of $360/tCO2. Our findings prompt careful policy designs to maximize cost-effectiveness in the transition towards a carbon-neutral energy system.
Quality estimation aims to measure the quality of translated content without access to a reference translation. This is crucial for machine translation systems in real-world scenarios where high-quality translation is needed. While many approaches ex ist for quality estimation, they are based on supervised machine learning requiring costly human labelled data. As an alternative, we propose a technique that does not rely on examples from human-annotators and instead uses synthetic training data. We train off-the-shelf architectures for supervised quality estimation on our synthetic data and show that the resulting models achieve comparable performance to models trained on human-annotated data, both for sentence and word-level prediction.
Sentence level quality estimation (QE) for machine translation (MT) attempts to predict the translation edit rate (TER) cost of post-editing work required to correct MT output. We describe our view on sentence-level QE as dictated by several practica l setups encountered in the industry. We find consumers of MT output---whether human or algorithmic ones---to be primarily interested in a binary quality metric: is the translated sentence adequate as-is or does it need post-editing? Motivated by this we propose a quality classification (QC) view on sentence-level QE whereby we focus on maximizing recall at precision above a given threshold. We demonstrate that, while classical QE regression models fare poorly on this task, they can be re-purposed by replacing the output regression layer with a binary classification one, achieving 50-60% recall at 90% precision. For a high-quality MT system producing 75-80% correct translations, this promises a significant reduction in post-editing work indeed.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا