ﻻ يوجد ملخص باللغة العربية
We established a Spatio-Temporal Neural Network, namely STNN, to forecast the spread of the coronavirus COVID-19 outbreak worldwide in 2020. The basic structure of STNN is similar to the Recurrent Neural Network (RNN) incorporating with not only temporal data but also spatial features. Two improved STNN architectures, namely the STNN with Augmented Spatial States (STNN-A) and the STNN with Input Gate (STNN-I), are proposed, which ensure more predictability and flexibility. STNN and its variants can be trained using Stochastic Gradient Descent (SGD) algorithm and its improved variants (e.g., Adam, AdaGrad and RMSProp). Our STNN models are compared with several classical epidemic prediction models, including the fully-connected neural network (BPNN), and the recurrent neural network (RNN), the classical curve fitting models, as well as the SEIR dynamical system model. Numerical simulations demonstrate that STNN models outperform many others by providing more accurate fitting and prediction, and by handling both spatial and temporal data.
In this work, we examine a novel forecasting approach for COVID-19 case prediction that uses Graph Neural Networks and mobility data. In contrast to existing time series forecasting models, the proposed approach learns from a single large-scale spati
Research in deep learning models to forecast traffic intensities has gained great attention in recent years due to their capability to capture the complex spatio-temporal relationships within the traffic data. However, most state-of-the-art approache
The Hawkes process has become a standard method for modeling self-exciting event sequences with different event types. A recent work has generalized the Hawkes process to a neurally self-modulating multivariate point process, which enables the captur
Since the first coronavirus case was identified in the U.S. on Jan. 21, more than 1 million people in the U.S. have confirmed cases of COVID-19. This infectious respiratory disease has spread rapidly across more than 3000 counties and 50 states in th
Parking demand forecasting and behaviour analysis have received increasing attention in recent years because of their critical role in mitigating traffic congestion and understanding travel behaviours. However, previous studies usually only consider