ﻻ يوجد ملخص باللغة العربية
Local convergence techniques have become a key methodology to study random graphs in sparse settings where the average degree remains bounded. However, many random graph properties do not directly converge when the random graph converges locally. A notable, and important, random graph property that does not follow from local convergence is the size and uniqueness of the giant component. We provide a simple criterion that guarantees that local convergence of a random graph implies the convergence of the proportion of vertices in the maximal connected component. We further show that, when this condition holds, the local properties of the giant are also described by the local limit. We apply this novel method to the configuration model as a proof of concept, reproving a result that is well-established. As a side result this proof, we show that the proof also implies the small-world nature of the configuration model.
Consider a set of $n$ vertices, where each vertex has a location in $mathbb{R}^d$ that is sampled uniformly from the unit cube in $mathbb{R}^d$, and a weight associated to it. Construct a random graph by placing edges independently for each vertex pa
The aim of this paper is the study of the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite dimensional generating function G and a maximum principle which, we
We study a generalisation of the random recursive tree (RRT) model and its multigraph counterpart, the uniform directed acyclic graph (DAG). Here, vertices are equipped with a random vertex-weight representing initial inhomogeneities in the network,
We study the critical behavior for percolation on inhomogeneous random networks on $n$ vertices, where the weights of the vertices follow a power-law distribution with exponent $tau in (2,3)$. Such networks, often referred to as scale-free networks,
Inspired by a concept in comparative genomics, we investigate properties of randomly chosen members of G_1(m,n,t), the set of bipartite graphs with $m$ left vertices, n right vertices, t edges, and each vertex of degree at least one. We give asymptot