ترغب بنشر مسار تعليمي؟ اضغط هنا

Random Oxford Graphs

61   0   0.0 ( 0 )
 نشر من قبل Rick Durrett
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by a concept in comparative genomics, we investigate properties of randomly chosen members of G_1(m,n,t), the set of bipartite graphs with $m$ left vertices, n right vertices, t edges, and each vertex of degree at least one. We give asymptotic results for the number of such graphs and the number of $(i,j)$ trees they contain. We compute the thresholds for the emergence of a giant component and for the graph to be connected.

قيم البحث

اقرأ أيضاً

We consider the random walk attachment graph introduced by Saram{a}ki and Kaski and proposed as a mechanism to explain how behaviour similar to preferential attachment may appear requiring only local knowledge. We show that if the length of the rando m walk is fixed then the resulting graphs can have properties significantly different from those of preferential attachment graphs, and in particular that in the case where the random walks are of length 1 and each new vertex attaches to a single existing vertex the proportion of vertices which have degree 1 tends to 1, in contrast to preferential attachment models. AMS 2010 Subject Classification: Primary 05C82. Key words and phrases:random graphs; preferential attachment; random walk.
For each $n ge 1$, let $mathrm{d}^n=(d^{n}(i),1 le i le n)$ be a sequence of positive integers with even sum $sum_{i=1}^n d^n(i) ge 2n$. Let $(G_n,T_n,Gamma_n)$ be uniformly distributed over the set of simple graphs $G_n$ with degree sequence $mathrm {d}^n$, endowed with a spanning tree $T_n$ and rooted along an oriented edge $Gamma_n$ of $G_n$ which is not an edge of $T_n$. Under a finite variance assumption on degrees in $G_n$, we show that, after rescaling, $T_n$ converges in distribution to the Brownian continuum random tree as $n to infty$. Our main tool is a new version of Pitmans additive coalescent (https://doi.org/10.1006/jcta.1998.2919), which can be used to build both random trees with a fixed degree sequence, and random tree-weighted graphs with a fixed degree sequence. As an input to the proof, we also derive a Poisson approximation theorem for the number of loops and multiple edges in the superposition of a fixed graph and a random graph with a given degree sequence sampled according to the configuration model; we find this to be of independent interest.
Consider a collection of random variables attached to the vertices of a graph. The reconstruction problem requires to estimate one of them given `far away observations. Several theoretical results (and simple algorithms) are available when their join t probability distribution is Markov with respect to a tree. In this paper we consider the case of sequences of random graphs that converge locally to trees. In particular, we develop a sufficient condition for the tree and graph reconstruction problem to coincide. We apply such condition to colorings of random graphs. Further, we characterize the behavior of Ising models on such graphs, both with attractive and random interactions (respectively, `ferromagnetic and `spin glass).
A bootstrap percolation process on a graph G is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round every uninfected node which has at least r infected neighbours becomes infected and remains so forever. The parameter r > 1 is fixed. We consider this process in the case where the underlying graph is an inhomogeneous random graph whose kernel is of rank 1. Assuming that initially every vertex is infected independently with probability p > 0, we provide a law of large numbers for the number of vertices that will have been infected by the end of the process. We also focus on a special case of such random graphs which exhibit a power-law degree distribution with exponent in (2,3). The first two authors have shown the existence of a critical function a_c(n) such that a_c(n)=o(n) with the following property. Let n be the number of vertices of the underlying random graph and let a(n) be the number of the vertices that are initially infected. Assume that a set of a(n) vertices is chosen randomly and becomes externally infected. If a(n) << a_c(n), then the process does not evolve at all, with high probability as n grows, whereas if a(n)>> a_c(n), then with high probability the final set of infected vertices is linear. Using the techniques of the previous theorem, we give the precise asymptotic fraction of vertices which will be eventually infected when a(n) >> a_c (n) but a(n) = o(n). Note that this corresponds to the case where p approaches 0.
In this paper we study the impact of random exponential edge weights on the distances in a random graph and, in particular, on its diameter. Our main result consists of a precise asymptotic expression for the maximal weight of the shortest weight pat hs between all vertices (the weighted diameter) of sparse random graphs, when the edge weights are i.i.d. exponential random variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا