ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremizers and stability of the Betke--Weil inequality

51   0   0.0 ( 0 )
 نشر من قبل Daniel Hug
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $K$ be a compact convex domain in the Euclidean plane. The mixed area $A(K,-K)$ of $K$ and $-K$ can be bounded from above by $1/(6sqrt{3})L(K)^2$, where $L(K)$ is the perimeter of $K$. This was proved by Ulrich Betke and Wolfgang Weil (1991). They also showed that if $K$ is a polygon, then equality holds if and only if $K$ is a regular triangle. We prove that among all convex domains, equality holds only in this case, as conjectured by Betke and Weil. This is achieved by establishing a stronger stability result for the geometric inequality $6sqrt{3}A(K,-K)le L(K)^2$.



قيم البحث

اقرأ أيضاً

112 - Yuchi Wu 2020
In this paper, we prove a Prekopa-Leindler type inequality of the $L_p$ Brunn-Minkowski inequality. It extends an inequality proved by Das Gupta [8] and Klartag [16], and thus recovers the Prekopa-Leindler inequality. In addition, we prove a functional $L_p$ Minkowski inequality.
We provide examples of non-locally compact geodesic Ptolemy metric spaces which are not uniquely geodesic. On the other hand, we show that locally compact, geodesic Ptolemy metric spaces are uniquely geodesic. Moreover, we prove that a metric space i s CAT(0) if and only if it is Busemann convex and Ptolemy.
In a seminal paper Volumen und Oberflache (1903), Minkowski introduced the basic notion of mixed volumes and the corresponding inequalities that lie at the heart of convex geometry. The fundamental importance of characterizing the extremals of these inequalities was already emphasized by Minkowski himself, but has to date only been resolved in special cases. In this paper, we completely settle the extremals of Minkowskis quadratic inequality, confirming a conjecture of R. Schneider. Our proof is based on the representation of mixed volumes of arbitrary convex bodies as Dirichlet forms associated to certain highly degenerate elliptic operators. A key ingredient of the proof is a quantitative rigidity property associated to these operators.
326 - Matthew Cordes , David Hume 2016
Stable subgroups and the Morse boundary are two systematic approaches to collect and study the hyperbolic aspects of finitely generated groups. In this paper we unify and generalize these strategies by viewing any geodesic metric space as a countable union of stable subspaces: we show that every stable subgroup is a quasi--convex subset of a set in this collection and that the Morse boundary is recovered as the direct limit of the usual Gromov boundaries of these hyperbolic subspaces. We use this approach, together with results of Leininger--Schleimer, to deduce that there is no purely geometric obstruction to the existence of a non-virtually--free convex cocompact subgroup of a mapping class group. In addition, we define two new quasi--isometry invariant notions of dimension: the stable dimension, which measures the maximal asymptotic dimension of a stable subset; and the Morse capacity dimension, which naturally generalises Buyalos capacity dimension for boundaries of hyperbolic spaces. We prove that every stable subset of a right--angled Artin group is quasi--isometric to a tree; and that the stable dimension of a mapping class group is bounded from above by a multiple of the complexity of the surface. In the case of relatively hyperbolic groups we show that finite stable dimension is inherited from peripheral subgroups. Finally, we show that all classical small cancellation groups and certain Gromov monster groups have stable dimension at most 2.
In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set $Omega$, different from a ball, which minimizes the ratio $delta(Omega)/lambda^2(Omega)$, where $delta$ is the isoperimetric deficit and $l ambda$ the Fraenkel asymmetry, giving a new proof ofthe quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا