ﻻ يوجد ملخص باللغة العربية
In this paper, we prove a Prekopa-Leindler type inequality of the $L_p$ Brunn-Minkowski inequality. It extends an inequality proved by Das Gupta [8] and Klartag [16], and thus recovers the Prekopa-Leindler inequality. In addition, we prove a functional $L_p$ Minkowski inequality.
Henstock and Macbeath asked in 1953 whether the Brunn-Minkowski inequality can be generalized to nonabelian locally compact groups; questions in the same line were also asked by Hrushovski, McCrudden, and Tao. We obtain here such an inequality and pr
We give a short, self-contained proof of two key results from a paper of four of the authors. The first is a kind of weighted discrete Prekopa-Leindler inequality. This is then applied to show that if $A, B subseteq mathbb{Z}^d$ are finite sets and $
We present an alternative, short proof of a recent discrete version of the Brunn-Minkowski inequality due to Lehec and the second named author. Our proof also yields the four functions theorem of Ahlswede and Daykin as well as some new variants.
We prove an analogue of the classical Steiner formula for the $L_p$ affine surface area of a Minkowski outer parallel body for any real parameters $p$. We show that the classical Steiner formula and the Steiner formula of Lutwaks dual Brunn Minkowski
We give an alternative proof for discrete Brunn-Minkowski type inequalities, recently obtained by Halikias, Klartag and the author. This proof also implies somewhat stronger weight