ﻻ يوجد ملخص باللغة العربية
Generative based strategy has shown great potential in the Generalized Zero-Shot Learning task. However, it suffers severe generalization problem due to lacking of feature diversity for unseen classes to train a good classifier. In this paper, we propose to enhance the generalizability of GZSL models via improving feature diversity of unseen classes. For this purpose, we present a novel Diverse Feature Synthesis (DFS) model. Different from prior works that solely utilize semantic knowledge in the generation process, DFS leverages visual knowledge with semantic one in a unified way, thus deriving class-specific diverse feature samples and leading to robust classifier for recognizing both seen and unseen classes in the testing phase. To simplify the learning, DFS represents visual and semantic knowledge in the aligned space, making it able to produce good feature samples with a low-complexity implementation. Accordingly, DFS is composed of two consecutive generators: an aligned feature generator, transferring semantic and visual representations into aligned features; a synthesized feature generator, producing diverse feature samples of unseen classes in the aligned space. We conduct comprehensive experiments to verify the efficacy of DFS. Results demonstrate its effectiveness to generate diverse features for unseen classes, leading to superior performance on multiple benchmarks. Code will be released upon acceptance.
Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts dedicated to overcoming the problems of visual-semantic domain gap and seen-unseen bias. However, most existing methods directly use feature extraction models
Zero-shot learning (ZSL) is made possible by learning a projection function between a feature space and a semantic space (e.g.,~an attribute space). Key to ZSL is thus to learn a projection that is robust against the often large domain gap between th
Suffering from the semantic insufficiency and domain-shift problems, most of existing state-of-the-art methods fail to achieve satisfactory results for Zero-Shot Learning (ZSL). In order to alleviate these problems, we propose a novel generative ZSL
Zero-Shot Learning (ZSL) is a classification task where we do not have even a single training labeled example from a set of unseen classes. Instead, we only have prior information (or description) about seen and unseen classes, often in the form of p
Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and unseen classes, when only the labeled examples from seen classes are provided. Recent feature generation methods learn a generative model that can synthesize the missi