ترغب بنشر مسار تعليمي؟ اضغط هنا

Failed attempt to escape from the quantum pigeon conundrum

265   0   0.0 ( 0 )
 نشر من قبل Gregory Reznik
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent criticism by Kunstatter et al. [Phys. Lett. A 384, 126686 (2020)] of a quantum setup violating the pigeon counting principle [Aharonov et al. PNAS 113, 532 (2016)] is refuted. The quantum nature of the violation of the pigeonhole principle with pre- and postselection is clarified.



قيم البحث

اقرأ أيضاً

Do charge modulations compete with electron pairing in high-temperature copper-oxide superconductors? We investigated this question by suppressing superconductivity in a stripe-ordered cuprate compound at low temperature with high magnetic fields. Wi th increasing field, loss of three-dimensional superconducting order is followed by reentrant two-dimensional superconductivity and then an ultra-quantum metal phase. Circumstantial evidence suggests that the latter state is bosonic and associated with the charge stripes. These results provide experimental support to the theoretical perspective that local segregation of doped holes and antiferromagnetic spin correlations underlies the electron-pairing mechanism in cuprates.
150 - S.V. Goloskokov 2009
Hard exclusive pi+ electroproduction is investigated within the handbag approach. The prominent role of the pion-pole contribution is demonstrated. It is also shown that the experimental data require a twist-3 effect which ensues from the helicity-fl ip generalized parton distribution H_T and the twist-3 pion wave function. The results calculated from this handbag approach are compared in detail with the experimental data on cross sections and spin asymmetries measured with a polarized target. It is also commented on consequences of this approach for exclusive pi^0 and vector-meson electroproduction.
Quantum optics is the study of the intrinsically quantum properties of light. During the second part of the 20th century experimental and theoretical progress developed together; nowadays quantum optics provides a testbed of many fundamental aspects of quantum mechanics such as coherence and quantum entanglement. Quantum optics helped trigger, both directly and indirectly, the birth of quantum technologies, whose aim is to harness non-classical quantum effects in applications from quantum key distribution to quantum computing. Quantum light remains at the heart of many of the most promising and potentially transformative quantum technologies. In this review, we celebrate the work of Sir Peter Knight and present an overview of the development of quantum optics and its impact on quantum technologies research. We describe the core theoretical tools developed to express and study the quantum properties of light, the key experimental approaches used to control, manipulate and measure such properties and their application in quantum simulation, and quantum computing.
176 - Yuri Kornyushin 2007
A detailed simple model is applied to study a high temperature hydrogen plasma ball. It is assumed that the ions and delocalized electrons are distributed randomly throughout the charged plasma ball (extra/missing charge is assumed to be found in a t hin layer on the surface of a ball). The energy of the microscopic electrostatic field around the ions is taken into account and calculated. It is shown in the framework of the model that charged hydrogen plasma ball can be stable as a metastable state, when subjected to external (atmospheric) pressure. Equilibrium radius of a ball, the barrier and the enthalpy of the equilibrium ball are calculated. It looks like the charged plasma ball in a metastable equilibrium should be used to conduct controllable nuclear fusion. Changes in the electric charge can be used to control the volume of a plasma ball.
104 - David Jewitt 2017
The Trojan asteroids of Jupiter and Neptune are likely to have been captured from original heliocentric orbits in the dynamically excited (hot) population of the Kuiper belt. However, it has long been known that the optical color distributions of the Jovian Trojans and the hot population are not alike. This difference has been reconciled with the capture hypothesis by assuming that the Trojans were resurfaced (for example, by sublimation of near-surface volatiles) upon inward migration from the Kuiper belt (where blackbody temperatures are $sim$40 K) to Jupiters orbit ($sim$125 K). Here, we examine the optical color distribution of the textit{Neptunian} Trojans using a combination of new optical photometry and published data. We find a color distribution that is statistically indistinguishable from that of the Jovian Trojans but unlike any sub-population in the Kuiper belt. This result is puzzling, because the Neptunian Trojans are very cold (blackbody temperature $sim$50 K) and a thermal process acting to modify the surface colors at Neptunes distance would also affect the Kuiper belt objects beyond, where the temperatures are nearly identical. The distinctive color distributions of the Jovian and Neptunian Trojans thus present us with a conundrum: they are very similar to each other, suggesting either capture from a common source or surface modification by a common process. However, the color distributions differ from any plausible common source population, and there is no known modifying process that could operate equally at both Jupiter and Neptune.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا