ترغب بنشر مسار تعليمي؟ اضغط هنا

An attempt to control a manmade nuclear fusion

147   0   0.0 ( 0 )
 نشر من قبل Yuri Kornyushin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yuri Kornyushin




اسأل ChatGPT حول البحث

A detailed simple model is applied to study a high temperature hydrogen plasma ball. It is assumed that the ions and delocalized electrons are distributed randomly throughout the charged plasma ball (extra/missing charge is assumed to be found in a thin layer on the surface of a ball). The energy of the microscopic electrostatic field around the ions is taken into account and calculated. It is shown in the framework of the model that charged hydrogen plasma ball can be stable as a metastable state, when subjected to external (atmospheric) pressure. Equilibrium radius of a ball, the barrier and the enthalpy of the equilibrium ball are calculated. It looks like the charged plasma ball in a metastable equilibrium should be used to conduct controllable nuclear fusion. Changes in the electric charge can be used to control the volume of a plasma ball.

قيم البحث

اقرأ أيضاً

The searching for the stable patterns in the evolution of cellular automata is implemented using stochastic synchronization between the present structures of the system and its precedent configurations. For most of the known evolution rules with comp lex behavior a dynamic competition among all the possible stable patterns is established and no stationary regime is reached. For the particular rule coded by the decimal number 18, a self-synchronization phenomenon can be obtained, even when strong modifications to the synchronization method are applied.
98 - F. Winterberg 2008
Recent progress towards the non-fission ignition of thermonuclear micro-explosions raises the prospect for a revival of the nuclear bomb propulsion idea, both for the fast transport of large payloads within the solar system and the launch into earth orbit without the release of fission products into the atmosphere. To reach this goal three areas of research are of importance: 1)Compact thermonuclear ignition drivers. 2)Fast ignition and deuterium burn. 3)Space-craft architecture involving magnetic insulation and GeV electrostatic potentials
108 - S.V. Goloskokov 2009
Hard exclusive pi+ electroproduction is investigated within the handbag approach. The prominent role of the pion-pole contribution is demonstrated. It is also shown that the experimental data require a twist-3 effect which ensues from the helicity-fl ip generalized parton distribution H_T and the twist-3 pion wave function. The results calculated from this handbag approach are compared in detail with the experimental data on cross sections and spin asymmetries measured with a polarized target. It is also commented on consequences of this approach for exclusive pi^0 and vector-meson electroproduction.
223 - Julien Hillairet 2015
The nuclear fusion research goal is to demonstrate the feasibility of fusion power for peaceful purposes. In order to achieve the conditions similar to those expected in an electricity-generating fusion power plant, plasmas with a temperature of seve ral hundreds of millions of degrees must be generated and sustained for long periods. For this purpose, RF antennas delivering multi-megawatts of power to magnetized confined plasma are commonly used in experimental tokamaks. In the gigahertz range of frequencies, high power phased arrays known as Lower Hybrid (LH) antennas are used to extend the plasma duration. This paper reviews some of the technological aspects of the LH antennas used in the Tore Supra tokamak and presents the current design of a proposed 20 MW LH system for the international experiment ITER.
JOREK is a massively parallel fully implicit non-linear extended MHD code for realistic tokamak X-point plasmas. It has become a widely used versatile code for studying large-scale plasma instabilities and their control developed in an international community. This article gives a comprehensive overview of the physics models implemented, numerical methods applied for solving the equations and physics studies performed with the code. A dedicated section highlights some of the verification work done for the code. A hierarchy of different physics models is available including a free boundary and resistive wall extension and hybrid kinetic-fluid models. The code allows for flux-surface aligned iso-parametric finite element grids in single and double X-point plasmas which can be extended to the true physical walls and uses a robust fully implicit time stepping. Particular focus is laid on plasma edge and scrape-off layer (SOL) physics as well as disruption related phenomena. Among the key results obtained with JOREK regarding plasma edge and SOL, are deep insights into the dynamics of edge localized modes (ELMs), ELM cycles, and ELM control by resonant magnetic perturbations, pellet injection, as well as by vertical magnetic kicks. Also ELM free regimes, detachment physics, the generation and transport of impurities during an ELM, and electrostatic turbulence in the pedestal region are investigated. Regarding disruptions, the focus is on the dynamics of the thermal quench and current quench triggered by massive gas injection (MGI) and shattered pellet injection (SPI), runaway electron (RE) dynamics as well as the RE interaction with MHD modes, and vertical displacement events (VDEs). Also the seeding and suppression of tearing modes (TMs), the dynamics of naturally occurring thermal quenches triggered by locked modes, and radiative collapses are being studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا