ترغب بنشر مسار تعليمي؟ اضغط هنا

Gelfand-Tsetlin Bases of representations for super Yangian and quantum affine superalgebra

92   0   0.0 ( 0 )
 نشر من قبل Kang Lu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Kang Lu




اسأل ChatGPT حول البحث

We give explicit actions of Drinfeld generators on Gelfand-Tsetlin bases of super Yangian modules associated with skew Young diagrams. In particular, we give another proof that these representations are irreducible. We study irreducible tame $mathrm Y(mathfrak{gl}_{1|1})$-modules and show that a finite-dimensional irreducible $mathrm Y(mathfrak{gl}_{1|1})$-module is tame if and only if it is thin. We also give the analogous statements for quantum affine superalgebra of type A.



قيم البحث

اقرأ أيضاً

180 - Ying Xu , Ruibin Zhang 2017
Let Uq(g) be the quantum affine superalgebra associated with an affine Kac-Moody superalgebra g which belongs to the three series osp(1|2n)^(1),sl(1|2n)^(2) and osp(2|2n)^(2). We develop vertex operator constructions for the level 1 irreducible integ rable highest weight representations and classify the finite dimensional irreducible representations of Uq(g). This makes essential use of the Drinfeld realisation for Uq(g), and quantum correspondences between affine Kac-Moody superalgebras, developed in earlier papers.
In their study of the equivariant K-theory of the generalized flag varieties $G/P$, where $G$ is a complex semisimple Lie group, and $P$ is a parabolic subgroup of $G$, Lenart and Postnikov introduced a combinatorial tool, called the alcove paths mod el. It provides a model for the highest weight crystals with dominant integral highest weights, generalizing the model by semistandard Young tableaux. In this paper, we prove a simple and explicit formula describing the crystal isomorphism between the alcove paths model and the Gelfand-Tsetlin patterns model for type $A$.
180 - Chun-Ju Lai , Li Luo 2015
In 1990 Beilinson, Lusztig and MacPherson provided a geometric realization of modified quantum $mathfrak{gl}_n$ and its canonical basis. A key step of their work is a construction of a monomial basis. Recently, Du and Fu provided an algebraic constru ction of the canonical basis for modified quantum affine $mathfrak{gl}_n$, which among other results used an earlier construction of monomial bases using Ringel-Hall algebra of the cyclic quiver. In this paper, we give an elementary algebraic construction of a monomial basis for affine Schur algebras and modified quantum affine $mathfrak{gl}_n$.
131 - Huanchen Bao , Weiqiang Wang , 2018
We generalize a construction in [BW18] (arXiv:1610.09271) by showing that the tensor product of a based $textbf{U}^{imath}$-module and a based $textbf{U}$-module is a based $textbf{U}^{imath}$-module. This is then used to formulate a Kazhdan-Lusztig theory for an arbitrary parabolic BGG category $mathcal{O}$ of the ortho-symplectic Lie superalgebras, extending a main result in [BW13] (arXiv:1310.0103).
The goal of this work is to provide an elementary construction of the canonical basis $mathbf B(w)$ in each quantum Schubert cell~$U_q(w)$ and to establish its invariance under modified Lusztigs symmetries. To that effect, we obtain a direct characte rization of the upper global basis $mathbf B^{up}$ in terms of a suitable bilinear form and show that $mathbf B(w)$ is contained in $mathbf B^{up}$ and its large part is preserved by modified Lusztigs symmetries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا