ﻻ يوجد ملخص باللغة العربية
In their study of the equivariant K-theory of the generalized flag varieties $G/P$, where $G$ is a complex semisimple Lie group, and $P$ is a parabolic subgroup of $G$, Lenart and Postnikov introduced a combinatorial tool, called the alcove paths model. It provides a model for the highest weight crystals with dominant integral highest weights, generalizing the model by semistandard Young tableaux. In this paper, we prove a simple and explicit formula describing the crystal isomorphism between the alcove paths model and the Gelfand-Tsetlin patterns model for type $A$.
We give explicit actions of Drinfeld generators on Gelfand-Tsetlin bases of super Yangian modules associated with skew Young diagrams. In particular, we give another proof that these representations are irreducible. We study irreducible tame $mathrm
We provide a classification and an explicit realization of all irreducible Gelfand-Tsetlin modules of the complex Lie algebra sl(3). The realization of these modules uses regular and derivative Gelfand-Tsetlin tableaux. In particular, we list all sim
We introduce the notion of essential support of a simple Gelfand-Tsetlin $mathfrak{gl}_n$-module as an important tool towards understanding the character formula of such module. This support detects the weights in the module having maximal possible G
We present some results about connections between Littelmann paths and Brownian paths in the framework of affine Lie algebras. We expect that they will be the first steps on a way which could hopefully lead to a Pitman type theorem for a Brownian mot
Pitmans theorem states that if {Bt, t $ge$ 0} is a one-dimensional Brownian motion, then {Bt -- 2 inf s$le$t Bs, t $ge$ 0} is a three dimensional Bessel process, i.e. a Brownian motion conditioned in Doob sense to remain forever positive. In this pap