ﻻ يوجد ملخص باللغة العربية
In this work, we develop an automated method to generate 3D human walking motion in simulation which is comparable to real-world human motion. At the core, our work leverages the ability of deep reinforcement learning methods to learn high-dimensional motor skills while being robust to variations in the environment dynamics. Our approach iterates between policy learning and parameter identification to match the real-world bio-mechanical human data. We present a thorough evaluation of the kinematics, kinetics and ground reaction forces generated by our learned virtual human agent. We also show that the method generalizes well across human-subjects with different kinematic structure and gait-characteristics.
An approach to model and estimate human walking kinematics in real-time for Physical Human-Robot Interaction is presented. The human gait velocity along the forward and vertical direction of motion is modelled according to the Yoyo-model. We designed
In this letter, we introduce a deep reinforcement learning (RL) based multi-robot formation controller for the task of autonomous aerial human motion capture (MoCap). We focus on vision-based MoCap, where the objective is to estimate the trajectory o
Learning robotic control policies in the real world gives rise to challenges in data efficiency, safety, and controlling the initial condition of the system. On the other hand, simulations are a useful alternative as they provide an abundant source o
Optimizing lower-body exoskeleton walking gaits for user comfort requires understanding users preferences over a high-dimensional gait parameter space. However, existing preference-based learning methods have only explored low-dimensional domains due
We present a unified model-based and data-driven approach for quadrupedal planning and control to achieve dynamic locomotion over uneven terrain. We utilize on-board proprioceptive and exteroceptive feedback to map sensory information and desired bas