ترغب بنشر مسار تعليمي؟ اضغط هنا

ReDet: A Rotation-equivariant Detector for Aerial Object Detection

126   0   0.0 ( 0 )
 نشر من قبل Jiaming Han
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, object detection in aerial images has gained much attention in computer vision. Different from objects in natural images, aerial objects are often distributed with arbitrary orientation. Therefore, the detector requires more parameters to encode the orientation information, which are often highly redundant and inefficient. Moreover, as ordinary CNNs do not explicitly model the orientation variation, large amounts of rotation augmented data is needed to train an accurate object detector. In this paper, we propose a Rotation-equivariant Detector (ReDet) to address these issues, which explicitly encodes rotation equivariance and rotation invariance. More precisely, we incorporate rotation-equivariant networks into the detector to extract rotation-equivariant features, which can accurately predict the orientation and lead to a huge reduction of model size. Based on the rotation-equivariant features, we also present Rotation-invariant RoI Align (RiRoI Align), which adaptively extracts rotation-invariant features from equivariant features according to the orientation of RoI. Extensive experiments on several challenging aerial image datasets DOTA-v1.0, DOTA-v1.5 and HRSC2016, show that our method can achieve state-of-the-art performance on the task of aerial object detection. Compared with previous best results, our ReDet gains 1.2, 3.5 and 2.6 mAP on DOTA-v1.0, DOTA-v1.5 and HRSC2016 respectively while reducing the number of parameters by 60% (313 Mb vs. 121 Mb). The code is available at: url{https://github.com/csuhan/ReDet}.



قيم البحث

اقرأ أيضاً

81 - Wentong Li , Jianke Zhu 2021
In contrast to the oriented bounding boxes, point set representation has great potential to capture the detailed structure of instances with the arbitrary orientations, large aspect ratios and dense distribution in aerial images. However, the convent ional point set-based approaches are handcrafted with the fixed locations using points-to-points supervision, which hurts their flexibility on the fine-grained feature extraction. To address these limitations, in this paper, we propose a novel approach to aerial object detection, named Oriented RepPoints. Specifically, we suggest to employ a set of adaptive points to capture the geometric and spatial information of the arbitrary-oriented objects, which is able to automatically arrange themselves over the object in a spatial and semantic scenario. To facilitate the supervised learning, the oriented conversion function is proposed to explicitly map the adaptive point set into an oriented bounding box. Moreover, we introduce an effective quality assessment measure to select the point set samples for training, which can choose the representative items with respect to their potentials on orientated object detection. Furthermore, we suggest a spatial constraint to penalize the outlier points outside the ground-truth bounding box. In addition to the traditional evaluation metric mAP focusing on overlap ratio, we propose a new metric mAOE to measure the orientation accuracy that is usually neglected in the previous studies on oriented object detection. Experiments on three widely used datasets including DOTA, HRSC2016 and UCAS-AOD demonstrate that our proposed approach is effective.
Detection of objects is extremely important in various aerial vision-based applications. Over the last few years, the methods based on convolution neural networks have made substantial progress. However, because of the large variety of object scales, densities, and arbitrary orientations, the current detectors struggle with the extraction of semantically strong features for small-scale objects by a predefined convolution kernel. To address this problem, we propose the rotation equivariant feature image pyramid network (REFIPN), an image pyramid network based on rotation equivariance convolution. The proposed model adopts single-shot detector in parallel with a lightweight image pyramid module to extract representative features and generate regions of interest in an optimization approach. The proposed network extracts feature in a wide range of scales and orientations by using novel convolution filters. These features are used to generate vector fields and determine the weight and angle of the highest-scoring orientation for all spatial locations on an image. By this approach, the performance for small-sized object detection is enhanced without sacrificing the performance for large-sized object detection. The performance of the proposed model is validated on two commonly used aerial benchmarks and the results show our proposed model can achieve state-of-the-art performance with satisfactory efficiency.
Recently, the study on object detection in aerial images has made tremendous progress in the community of computer vision. However, most state-of-the-art methods tend to develop elaborate attention mechanisms for the space-time feature calibrations w ith high computational complexity, while surprisingly ignoring the importance of feature calibrations in channels. In this work, we propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance channel communications in a feature transformer fashion, which can adaptively determine the calibration weights for each channel based on the global feature affinity-pairs. Specifically, given a set of feature maps, CG first computes the feature similarity between each channel and the remaining channels as the intermediary calibration guidance. Then, re-representing each channel by aggregating all the channels weighted together via the guidance. Our CG can be plugged into any deep neural network, which is named as CG-Net. To demonstrate its effectiveness and efficiency, extensive experiments are carried out on both oriented and horizontal object detection tasks of aerial images. Results on two challenging benchmarks (i.e., DOTA and HRSC2016) demonstrate that our CG-Net can achieve state-of-the-art performance in accuracy with a fair computational overhead. https://github.com/WeiZongqi/CG-Net
Recent advances in object detection are mainly driven by deep learning with large-scale detection benchmarks. However, the fully-annotated training set is often limited for a target detection task, which may deteriorate the performance of deep detect ors. To address this challenge, we propose a novel low-shot transfer detector (LSTD) in this paper, where we leverage rich source-domain knowledge to construct an effective target-domain detector with very few training examples. The main contributions are described as follows. First, we design a flexible deep architecture of LSTD to alleviate transfer difficulties in low-shot detection. This architecture can integrate the advantages of both SSD and Faster RCNN in a unified deep framework. Second, we introduce a novel regularized transfer learning framework for low-shot detection, where the transfer knowledge (TK) and background depression (BD) regularizations are proposed to leverage object knowledge respectively from source and target domains, in order to further enhance fine-tuning with a few target images. Finally, we examine our LSTD on a number of challenging low-shot detection experiments, where LSTD outperforms other state-of-the-art approaches. The results demonstrate that LSTD is a preferable deep detector for low-shot scenarios.
Object detection in aerial images is a challenging task due to the following reasons: (1) objects are small and dense relative to images; (2) the object scale varies in a wide range; (3) the number of object in different classes is imbalanced. Many c urrent methods adopt cropping idea: splitting high resolution images into serials subregions (chips) and detecting on them. However, some problems such as scale variation, object sparsity, and class imbalance exist in the process of training network with chips. In this work, three augmentation methods are introduced to relieve these problems. Specifically, we propose a scale adaptive module, which dynamically adjusts chip size to balance object scale, narrowing scale variation in training. In addtion, we introduce mosaic to augment datasets, relieving object sparity problem. To balance catgory, we present mask resampling to paste object in chips with panoramic segmentation. Our model achieves state-of-the-art perfomance on two popular aerial image datasets of VisDrone and UAVDT. Remarkably, three methods can be independently applied to detectiors, increasing performance steady without the sacrifice of inference efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا