ترغب بنشر مسار تعليمي؟ اضغط هنا

LSTD: A Low-Shot Transfer Detector for Object Detection

73   0   0.0 ( 0 )
 نشر من قبل Hao Chen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advances in object detection are mainly driven by deep learning with large-scale detection benchmarks. However, the fully-annotated training set is often limited for a target detection task, which may deteriorate the performance of deep detectors. To address this challenge, we propose a novel low-shot transfer detector (LSTD) in this paper, where we leverage rich source-domain knowledge to construct an effective target-domain detector with very few training examples. The main contributions are described as follows. First, we design a flexible deep architecture of LSTD to alleviate transfer difficulties in low-shot detection. This architecture can integrate the advantages of both SSD and Faster RCNN in a unified deep framework. Second, we introduce a novel regularized transfer learning framework for low-shot detection, where the transfer knowledge (TK) and background depression (BD) regularizations are proposed to leverage object knowledge respectively from source and target domains, in order to further enhance fine-tuning with a few target images. Finally, we examine our LSTD on a number of challenging low-shot detection experiments, where LSTD outperforms other state-of-the-art approaches. The results demonstrate that LSTD is a preferable deep detector for low-shot scenarios.



قيم البحث

اقرأ أيضاً

Conventional methods for object detection usually require substantial amounts of training data and annotated bounding boxes. If there are only a few training data and annotations, the object detectors easily overfit and fail to generalize. It exposes the practical weakness of the object detectors. On the other hand, human can easily master new reasoning rules with only a few demonstrations using previously learned knowledge. In this paper, we introduce a few-shot object detection via knowledge transfer, which aims to detect objects from a few training examples. Central to our method is prototypical knowledge transfer with an attached meta-learner. The meta-learner takes support set images that include the few examples of the novel categories and base categories, and predicts prototypes that represent each category as a vector. Then, the prototypes reweight each RoI (Region-of-Interest) feature vector from a query image to remodels R-CNN predictor heads. To facilitate the remodeling process, we predict the prototypes under a graph structure, which propagates information of the correlated base categories to the novel categories with explicit guidance of prior knowledge that represents correlations among categories. Extensive experiments on the PASCAL VOC dataset verifies the effectiveness of the proposed method.
We propose a Generative Transfer Network (GTNet) for zero shot object detection (ZSD). GTNet consists of an Object Detection Module and a Knowledge Transfer Module. The Object Detection Module can learn large-scale seen domain knowledge. The Knowledg e Transfer Module leverages a feature synthesizer to generate unseen class features, which are applied to train a new classification layer for the Object Detection Module. In order to synthesize features for each unseen class with both the intra-class variance and the IoU variance, we design an IoU-Aware Generative Adversarial Network (IoUGAN) as the feature synthesizer, which can be easily integrated into GTNet. Specifically, IoUGAN consists of three unit models: Class Feature Generating Unit (CFU), Foreground Feature Generating Unit (FFU), and Background Feature Generating Unit (BFU). CFU generates unseen features with the intra-class variance conditioned on the class semantic embeddings. FFU and BFU add the IoU variance to the results of CFU, yielding class-specific foreground and background features, respectively. We evaluate our method on three public datasets and the results demonstrate that our method performs favorably against the state-of-the-art ZSD approaches.
Different from static images, videos contain additional temporal and spatial information for better object detection. However, it is costly to obtain a large number of videos with bounding box annotations that are required for supervised deep learnin g. Although humans can easily learn to recognize new objects by watching only a few video clips, deep learning usually suffers from overfitting. This leads to an important question: how to effectively learn a video object detector from only a few labeled video clips? In this paper, we study the new problem of few-shot learning for video object detection. We first define the few-shot setting and create a new benchmark dataset for few-shot video object detection derived from the widely used ImageNet VID dataset. We employ a transfer-learning framework to effectively train the video object detector on a large number of base-class objects and a few video clips of novel-class objects. By analyzing the results of two methods under this framework (Joint and Freeze) on our designed weak and strong base datasets, we reveal insufficiency and overfitting problems. A simple but effective method, called Thaw, is naturally developed to trade off the two problems and validate our analysis. Extensive experiments on our proposed benchmark datasets with different scenarios demonstrate the effectiveness of our novel analysis in this new few-shot video object detection problem.
Single shot detectors that are potentially faster and simpler than two-stage detectors tend to be more applicable to object detection in videos. Nevertheless, the extension of such object detectors from image to video is not trivial especially when a ppearance deterioration exists in videos, emph{e.g.}, motion blur or occlusion. A valid question is how to explore temporal coherence across frames for boosting detection. In this paper, we propose to address the problem by enhancing per-frame features through aggregation of neighboring frames. Specifically, we present Single Shot Video Object Detector (SSVD) -- a new architecture that novelly integrates feature aggregation into a one-stage detector for object detection in videos. Technically, SSVD takes Feature Pyramid Network (FPN) as backbone network to produce multi-scale features. Unlike the existing feature aggregation methods, SSVD, on one hand, estimates the motion and aggregates the nearby features along the motion path, and on the other, hallucinates features by directly sampling features from the adjacent frames in a two-stream structure. Extensive experiments are conducted on ImageNet VID dataset, and competitive results are reported when comparing to state-of-the-art approaches. More remarkably, for $448 times 448$ input, SSVD achieves 79.2% mAP on ImageNet VID, by processing one frame in 85 ms on an Nvidia Titan X Pascal GPU. The code is available at url{https://github.com/ddjiajun/SSVD}.
Object detection has witnessed significant progress by relying on large, manually annotated datasets. Annotating such datasets is highly time consuming and expensive, which motivates the development of weakly supervised and few-shot object detection methods. However, these methods largely underperform with respect to their strongly supervised counterpart, as weak training signals emph{often} result in partial or oversized detections. Towards solving this problem we introduce, for the first time, an online annotation module (OAM) that learns to generate a many-shot set of emph{reliable} annotations from a larger volume of weakly labelled images. Our OAM can be jointly trained with any fully supervised two-stage object detection method, providing additional training annotations on the fly. This results in a fully end-to-end strategy that only requires a low-shot set of fully annotated images. The integration of the OAM with Fast(er) R-CNN improves their performance by $17%$ mAP, $9%$ AP50 on PASCAL VOC 2007 and MS-COCO benchmarks, and significantly outperforms competing methods using mixed supervision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا