ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing transient oligonucleotide hybridization kinetics using DNA-PAINT and optoplasmonic single-molecule sensing on gold nanorods

68   0   0.0 ( 0 )
 نشر من قبل Narima Eerqing
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a comparison of two photonic techniques for single-molecule sensing: fluorescence nanoscopy and optoplasmonic sensing. As the test system, oligonucleotides with and without fluorescent labels are transiently hybridized to complementary docking strands attached to gold nanorods. Comparing the measured single-molecule kinetics helps to examine the influence of fluorescent labels as well as factors arising from different sensing geometries. Our results demonstrate that DNA dissociation is not significantly altered by the fluorescent label, while DNA association is affected by geometric factors in the two techniques. These findings open the door to exploiting plasmonic sensing and fluorescence nanoscopy in a complementary fashion, which will aid in building more powerful sensors and uncovering the intricate effects that influence the behavior of single molecules.

قيم البحث

اقرأ أيضاً

Surface enhanced Raman scattering (SERS) is optically sensitive and chemically specific to detect single molecule spectroscopic signatures. Facilitating this capability in optically-trapped nanoparticles at low laser power remains a significant chall enge. In this letter, we show single molecule SERS signatures in reversible assemblies of trapped plasmonic nanoparticles using a single laser excitation (633 nm). Importantly, this trap is facilitated by the thermoplasmonic field of a single gold nanoparticle dropcasted on a glass surface. We employ bi-analyte SERS technique to ascertain the single molecule statistical signatures, and identify the critical parameters of the thermoplasmonic tweezer that provide this sensitivity. Furthermore, we show the utility of this low power ($approx$0.1 mW/$mu$m^2) tweezer platform to trap single gold nanoparticle and transport assembly of nanoparticles. Given that our configuration is based on a dropcasted gold nanoparticle, we envisage its utility to create reconfigurable plasmonic metafluids in physiological and catalytic environments, and can be potentially adapted as an in-vivo plasmonic tweezer.
128 - M. D. Baaske , N. Asgari , D. Punj 2021
Optoplasmonic methods capable of single protein detection so far rely on analyte immobilization in order to facilitate detection [1-6]. These detection schemes, even if they facilitate transient single-molecule detection [7,8] via consequent formatio n and cleavage of chemical bonds, typically exhibit time resolutions on the order of milliseconds. The need for analyte immobilisation is a direct consequence of the minuscule dimensions of plasmonic near fields typically providing sub-attolitre-sized detection volumes which in turn demand sub-microsecond temporal resolution for the direct detection of proteins in motion. Here we show that such temporal resolution can indeed be achieved. We demonstrate the observation of single proteins as small as Hemoglobin (molecular weight: 64 kDa) as they traverse plasmonic near fields of gold nanorods and interact with their surface, all while maintaining signal-to-noise ratios larger than 5 and an unprecedented temporal resolution well below microseconds. This method enables the label-free observation of single-molecule dynamics on previously unaccessible timescales.
56 - Ashwin Gopinath 2018
DNA origami is a modular platform for the combination of molecular and colloidal components to create optical, electronic, and biological devices. Integration of such nanoscale devices with microfabricated connectors and circuits is challenging: larg e numbers of freely diffusing devices must be fixed at desired locations with desired alignment. We present a DNA origami molecule whose energy landscape on lithographic binding sites has a unique maximum. This property enables device alignment within 3.2$^{circ}$ on SiO$_2$. Orientation is absolute (all degrees of freedom are specified) and arbitrary (every molecules orientation is independently specified). The use of orientation to optimize device performance is shown by aligning fluorescent emission dipoles within microfabricated optical cavities. Large-scale integration is demonstrated via an array of 3,456 DNA origami with 12 distinct orientations, which indicates the polarization of excitation light.
The magnetic properties of a monolayer of Fe4 single molecule magnets grafted onto a Au (111) thin film have been investigated using low energy muon spin rotation. The properties of the monolayer are compared to bulk Fe4. We find that the magnetic pr operties in the monolayer are consistent with those measured in the bulk, strongly indicating that the single molecule magnet nature of Fe4 is preserved in a monolayer. However, differences in the temperature dependencies point to a small difference in their energy scale. We attribute this to a ~60% increase in the intramolecular magnetic interactions in the monolayer.
250 - L. Saviot 2018
The vibrations of gold nanowires and nanorods are investigated numerically in the framework of continuum elasticity using the Rayleigh-Ritz variational method. Special attention is paid to identify the vibrations relevant in Raman scattering experime nts. A comprehensive description of the vibrations of nanorods is proposed by determining their symmetry, comparing with standing waves in the corresponding nanowires and estimating their Raman intensity. The role of experimentally relevant parameters such as the anisotropic cubic lattice structure, the presence of faceted lateral surfaces and the shape of the ends of the nanorods is evaluated. Elastic anisotropy is shown to play a significant role contrarily to the presence of facets. Localized vibrations are found for nanorods with flat ends. Their evolution as the shape of the ends is changed to half-spheres is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا