ترغب بنشر مسار تعليمي؟ اضغط هنا

Single Molecule SERS in a Single Gold Nanoparticle-driven Thermoplasmonic Tweezer

229   0   0.0 ( 0 )
 نشر من قبل Sunny Tiwari
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Surface enhanced Raman scattering (SERS) is optically sensitive and chemically specific to detect single molecule spectroscopic signatures. Facilitating this capability in optically-trapped nanoparticles at low laser power remains a significant challenge. In this letter, we show single molecule SERS signatures in reversible assemblies of trapped plasmonic nanoparticles using a single laser excitation (633 nm). Importantly, this trap is facilitated by the thermoplasmonic field of a single gold nanoparticle dropcasted on a glass surface. We employ bi-analyte SERS technique to ascertain the single molecule statistical signatures, and identify the critical parameters of the thermoplasmonic tweezer that provide this sensitivity. Furthermore, we show the utility of this low power ($approx$0.1 mW/$mu$m^2) tweezer platform to trap single gold nanoparticle and transport assembly of nanoparticles. Given that our configuration is based on a dropcasted gold nanoparticle, we envisage its utility to create reconfigurable plasmonic metafluids in physiological and catalytic environments, and can be potentially adapted as an in-vivo plasmonic tweezer.



قيم البحث

اقرأ أيضاً

We report a comparison of two photonic techniques for single-molecule sensing: fluorescence nanoscopy and optoplasmonic sensing. As the test system, oligonucleotides with and without fluorescent labels are transiently hybridized to complementary dock ing strands attached to gold nanorods. Comparing the measured single-molecule kinetics helps to examine the influence of fluorescent labels as well as factors arising from different sensing geometries. Our results demonstrate that DNA dissociation is not significantly altered by the fluorescent label, while DNA association is affected by geometric factors in the two techniques. These findings open the door to exploiting plasmonic sensing and fluorescence nanoscopy in a complementary fashion, which will aid in building more powerful sensors and uncovering the intricate effects that influence the behavior of single molecules.
56 - Ashwin Gopinath 2018
DNA origami is a modular platform for the combination of molecular and colloidal components to create optical, electronic, and biological devices. Integration of such nanoscale devices with microfabricated connectors and circuits is challenging: larg e numbers of freely diffusing devices must be fixed at desired locations with desired alignment. We present a DNA origami molecule whose energy landscape on lithographic binding sites has a unique maximum. This property enables device alignment within 3.2$^{circ}$ on SiO$_2$. Orientation is absolute (all degrees of freedom are specified) and arbitrary (every molecules orientation is independently specified). The use of orientation to optimize device performance is shown by aligning fluorescent emission dipoles within microfabricated optical cavities. Large-scale integration is demonstrated via an array of 3,456 DNA origami with 12 distinct orientations, which indicates the polarization of excitation light.
We demonstrate the formation of a single NaCs molecule in an optical tweezer by magnetoassociation through an s-wave Feshbach resonance at 864.11(5)G. Starting from single atoms cooled to their motional ground states, we achieve conversion efficienci es of 47(1)%, and measure a molecular lifetime of 4.7(7)ms. By construction, the single molecules are predominantly (77(5)%) in the center-of-mass motional ground state of the tweezer. Furthermore, we produce a single p-wave molecule near 807G by first preparing one of the atoms with one quantum of motional excitation. Our creation of a single weakly bound molecule in a designated internal state in the motional ground state of an optical tweezer is a crucial step towards coherent control of single molecules in optical tweezer arrays.
Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) are extremely attractive materials for optoelectronic applications in the visible and near-IR range. Here, we address for the first time to the best of our knowledge the issue of resonance coupling in hybrid exciton-polariton structures based on single Si nanoparticles coupled to monolayer WS2. We predict a transition from weak to strong coupling regime , with a Rabi splitting energy exceeding 200 meV for a Si nanoparticle covered by monolayer WS 2 at the magnetic optical Mie resonance. This large transition is achieved due to the symmetry of magnetic dipole Mie mode and by changing the surrounding dielectric material from air to water. The prediction is based on the experimental estimation of TMDC dipole moment variation obtained from measured photoluminescence (PL) spectra of WS2 monolayers in different solvents. An ability of such a system to tune the resonance coupling is realized experimentally for optically resonant spherical Si nanoparticles placed on a WS2 monolayer. The Rabi splitting energy obtained for this scenario increases from 49.6 meV to 86.6 meV after replacing air by water. Our findings pave the way to develop high-efficiency optoelectronic, nanophotonic and quantum optical devices.
145 - P. G. Etchegoin , E. C. Le Ru , 2008
We report on the observation of the natural isotopic spread of carbon from single-molecule Surface Enhanced Raman Spectroscopy (SM-SERS). By choosing a dye molecule with a very localized Raman active vibration in a cyano bond (C$equiv$N triple bond), we observe (in a SERS colloidal liquid) a small fraction of SM-SERS events where the frequency of the cyano mode is softened and in agreement with the effect of substituting $^{12}$C by the next most abundant $^{13}$C isotope. This example adds another demonstration of single molecule sensitivity in SERS through isotopic editing which is done, in this case, not by artificial isotopic editing but rather by nature itself. It also highlights SERS as a unique spectroscopic tool, capable of detecting an isotopic change in one atom of a single molecule.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا