ﻻ يوجد ملخص باللغة العربية
Granulation of quantum matter -- the formation of persistent small-scale patterns -- is realized in the images of quasi-one-dimensional Bose-Einstein condensates perturbed by a periodically modulated interaction. Our present analysis of a mean-field approximation suggests that granulation is caused by the gradual transformation of phase undulations into density undulations. This is achieved by a suitably large modulation frequency, while for low enough frequencies the system exhibits a quasi-adiabatic regime. We show that the persistence of granulation is a result of the irregular evolution of the phase of the wavefunction representing an irreversible process. Our model predictions agree with numerical solutions of the Schrodinger equation and experimental observations. The numerical computations reveal the emergent many-body correlations behind these phenomena via the multi-configurational time-dependent Hartree theory for bosons (MCTDHB).
The dynamics of a discrete soliton in an array of Bose-Einstein condensates under the action of a periodically time-modulated atomic scattering length (``Feshbach-resonance management, FRM) is investigated. The cases of both slow and rapid modulation
We investigate phase separation of Bose-Einstein condensates (BECs) of two-component atoms and one-component molecules with a homonuclear Feshbach resonance. We develop a full model for dilute atomic and molecular gases including correlation of the F
We investigate controlled phase separation of a binary Bose-Einstein condensate (BEC) in the proximity of mixed-spin-channel Feshbach resonance in the |F = 1, mF = +1> and |F = 2,mF = -1> states of 87Rb at a magnetic field of 9.10 G. Phase separation
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, the