ﻻ يوجد ملخص باللغة العربية
The dynamics of a discrete soliton in an array of Bose-Einstein condensates under the action of a periodically time-modulated atomic scattering length (``Feshbach-resonance management, FRM) is investigated. The cases of both slow and rapid modulation, in comparison with the tunneling frequency, are considered. We employ a discrete variational approach for the analysis of the system. The existence of nonlinear resonances and chaos is predicted at special values of the driving frequency. Soliton splitting is observed in numerical simulations. In the case of the rapid modulation, we derive an averaged equation, which is a generalized discrete nonlinear Schroedinger equation, including higher-order effective nonlinearities and intersite nonlinear interactions. Thus the predicted discrete FRM solitons are a direct matter-wave analog of recently investigated discrete diffraction-managed optical solitons.
Granulation of quantum matter -- the formation of persistent small-scale patterns -- is realized in the images of quasi-one-dimensional Bose-Einstein condensates perturbed by a periodically modulated interaction. Our present analysis of a mean-field
We study tunneling dynamics of atomic pairs in Bose-Einstein condensates with Feshbach resonances. It is shown that the tunneling of the atomic pairs depends on not only the tunneling coupling between the atomic condensate and the molecular condensat
We investigate controlled phase separation of a binary Bose-Einstein condensate (BEC) in the proximity of mixed-spin-channel Feshbach resonance in the |F = 1, mF = +1> and |F = 2,mF = -1> states of 87Rb at a magnetic field of 9.10 G. Phase separation
We investigate the phase diagram of a two-species Bose-Hubbard model describing atoms and molecules on a lattice, interacting via a Feshbach resonance. We identify a region where the system exhibits an exotic super-Mott phase and regions with phases
We study collective modes of vortex lattices in two-component Bose-Einstein condensates subject to synthetic magnetic fields in mutually parallel or antiparallel directions. By means of the Bogoliubov theory with the lowest-Landau-level approximation