ترغب بنشر مسار تعليمي؟ اضغط هنا

Review on quasi-2D square planar nickelates

79   0   0.0 ( 0 )
 نشر من قبل Junjie Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In strongly correlated materials, lattice, charge, spin and orbital degrees of freedom interact with each other, leading to emergent physical properties such as superconductivity, colossal magnetic resistance and metal-insulator transition. Quasi-2D square planar nickelates, Rn+1NinO2n+2 (R=rare earth, n=2, 3...), are of significant interest and long sought for cuprate analogue due to the 3d9 electronic configuration of Ni+, the same as the active ion Cu2+ in the high-Tc superconducting cuprates. The field has attracted intense attention since 2019 due to the discovery of superconductivity in thin films of Nd0.8Sr0.2NiO2, although no superconductivity has been reported in bulk polycrystalline powders. Herein, we review the synthesis of polycrystalline powders of quasi-2D square planar nickelates through topotactic reduction of parent compounds that are synthesized via solid state reaction, precursor method, high pressure floating zone method and high-pressure flux method. We emphasize single crystal preparation using the high-pressure floating zone techniques. We discuss their crystal structure and physical properties including resistivity, magnetic susceptibility and heat capacity. We highlight the cuprate-like physics, including charge/spin stripes and large orbital polarization, identified in single crystals of R4Ni3O8 (R=La and Pr) combining synchrotron X-ray/neutron single crystal diffraction and density functional theory calculations. Furthermore, the challenges and possible research directions of this fast-moving field in the future are briefly discussed.

قيم البحث

اقرأ أيضاً

The discovery of superconductivity in Sr-doped NdNiO$_{2}$ is a crucial breakthrough in the long pursuit for nickel oxide materials with electronic and magnetic properties similar to those of the cuprates. NdNiO$_2$ is the infinite-layer member of a family of square-planar nickelates with general chemical formula R$_{n+1}$Ni$_n$O$_{2n+2}$ (R = La, Pr, Nd, $n= 2, 3, ... infty$). In this letter, we investigate superconductivity in the trilayer member of this series (R$_4$Ni$_3$O$_8$) using a combination of first-principles and $t-J$ model calculations. R$_4$Ni$_3$O$_8$ compounds resemble cuprates more than RNiO$_2$ materials in that only Ni-$d_{x^{2}-y^{2}}$ bands cross the Fermi level, they exhibit a largely reduced charge transfer energy, and as a consequence superexchange interactions are significantly enhanced. We find that the superconducting instability in doped R$_4$Ni$_3$O$_8$ compounds is considerably stronger with a maximum gap about four times larger than that in Sr$_{0.2}$Nd$_{0.8}$NiO$_2$.
The recent discovery of superconductivity in infinite-layer nickelate films has aroused great interest since it provides a new platform to explore the mechanism of high-temperature superconductivity. However, superconductivity only appears in the thi n film form and synthesizing superconducting nickelate films is extremely challenging, limiting the in-depth studies on this compound. Here, we explore the critical parameters in the growth of high quality nickelate films using molecular beam epitaxy (MBE). We found that stoichiometry is crucial in optimizing the crystalline structure and realizing superconductivity in nickelate films. In precursor NdNiO3 films, optimal stoichiometry of cations yields the most compact lattice while off-stoichiometry of cations causes obvious lattice expansion, influencing the subsequent topotactic reduction and the emergence of superconductivity in infinite-layer nickelates. Surprisingly, in-situ reflection high energy electron diffraction (RHEED) indicates that some impurity phases always appear once Sr ions are doped into NdNiO3 although the X-ray diffraction (XRD) data are of high quality. While these impurity phases do not seem to suppress the superconductivity, their impacts on the electronic and magnetic structure deserve further studies. Our work demonstrates and highlights the significance of cation stoichiometry in superconducting nickelate family.
The nickelate Pr4Ni3O8 features quasi-two-dimensional layers consisting of three stacked square-planar NiO2 planes, in a similar way to the well-known cuprate superconductors. The mixed-valent nature of Ni and its metallic properties makes it a candi date for potentially unconventional superconductivity. We have synthesized Pr4Ni3O8 by topotactic reduction of Pr4Ni3O10 in 10 percent hydrogen gas, and report on measurements of powder-neutron diffraction, magnetization and muon-spin rotation (uSR). We find that Pr4Ni3O8 shows complicated spin-glass behavior with a distinct magnetic memory effect in the temperature range from 2 to 300 K and a freezing temperature T_s ~ 68 K. Moreover, the analysis of uSR spectra indicates two magnetic processes characterized by remarkably different relaxation rates: a slowly-relaxing signal, resulting from paramagnetic fluctuations of Pr/Ni ions, and a fast-relaxing signal, whose relaxation rate increases substantially below ~ 70 K which can be ascribed to the presence of short-range correlated regions. We conclude that the complex spin-freezing process in Pr4Ni3O8 is governed by these multiple magnetic interactions. It is possible that the complex magnetism in Pr4Ni3O8 is detrimental to the occurrence of superconductivity.
A series of Ruddlesden-Popper nickelates, Nd$_{n+1}$Ni$_{n}$O$_{3n+1}$ (${n}$ = 1-5), have been stabilized in thin film form using reactive molecular-beam epitaxy. High crystalline quality has been verified by X-ray diffraction and scanning transmiss ion electron microscopy. X-ray photoelectron spectroscopy indicates the ${n}$-dependent valence states of nickel in these compounds. Metal-insulator transitions show clear ${n}$ dependence for intermediate members (${n}$ = 3-5), and the low-temperature resistivities of which show logarithmic dependence, resembling the Kondo-scattering as observed in the parent compounds of superconducting infinite-layer nickelates.
88 - A. A. Kordyuk 2014
Angle resolved photoemission spectroscopy (ARPES) enables direct observation of the Fermi surface and underlying electronic structure of crystals---the basic concepts to describe all the electronic properties of solids and to understand the key elect ronic interactions involved. The method is the most effective to study quasi-2D metals, to which the subjects of almost all hot problems in modern condensed matter physics have happened to belong. This has forced incredibly the development of the ARPES method which we face now. The aim of this paper is to introduce to the reader the state-of-the-art ARPES, reviewing the results of its application to such topical problems as high temperature superconductivity in cuprates and iron based superconductors, and electronic ordering in the transition metal dichalcogenides and manganites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا