ﻻ يوجد ملخص باللغة العربية
Bartik regressions use locations differential exposure to nationwide sector-level shocks as an instrument to estimate the effect of a location-level treatment on an outcome. In the canonical Bartik design, locations differential exposure to industry-level employment shocks are used as an instrument to measure the effect of their employment evolution on their wage evolution. Some recent papers studying Bartik designs have assumed that the sector-level shocks are exogenous and all have the same expectation. This second assumption may sometimes be implausible. For instance, there could be industries whose employment is more likely to grow than that of other industries. We replace that second assumption by parallel trends assumptions. Under our assumptions, Bartik regressions identify weighted sums of location-specific effects, with weights that may be negative. Accordingly, such regressions may be misleading in the presence of heterogeneous effects, an issue that was not present under the assumptions maintained in previous papers. Estimating the weights attached to Bartik regressions is a way to assess their robustness to heterogeneous effects. We also propose an alternative estimator that is robust to location-specific effects. Finally, we revisit two applications. In both cases, Bartik regressions have fairly large negative weights attached to them. Our alternative estimator is substantially different from the Bartik regression coefficient in one application.
Unobserved heterogeneous treatment effects have been emphasized in the recent policy evaluation literature (see e.g., Heckman and Vytlacil, 2005). This paper proposes a nonparametric test for unobserved heterogeneous treatment effects in a treatment
Consider a causal structure with endogeneity (i.e., unobserved confoundedness) in empirical data, where an instrumental variable is available. In this setting, we show that the mean social welfare function can be identified and represented via the ma
Estimation of heterogeneous treatment effects is an essential component of precision medicine. Model and algorithm-based methods have been developed within the causal inference framework to achieve valid estimation and inference. Existing methods suc
We study the causal interpretation of regressions on multiple dependent treatments and flexible controls. Such regressions are often used to analyze randomized control trials with multiple intervention arms, and to estimate institutional quality (e.g
The policy relevant treatment effect (PRTE) measures the average effect of switching from a status-quo policy to a counterfactual policy. Estimation of the PRTE involves estimation of multiple preliminary parameters, including propensity scores, cond