ﻻ يوجد ملخص باللغة العربية
The policy relevant treatment effect (PRTE) measures the average effect of switching from a status-quo policy to a counterfactual policy. Estimation of the PRTE involves estimation of multiple preliminary parameters, including propensity scores, conditional expectation functions of the outcome and covariates given the propensity score, and marginal treatment effects. These preliminary estimators can affect the asymptotic distribution of the PRTE estimator in complicated and intractable manners. In this light, we propose an orthogonal score for double debiased estimation of the PRTE, whereby the asymptotic distribution of the PRTE estimator is obtained without any influence of preliminary parameter estimators as far as they satisfy mild requirements of convergence rates. To our knowledge, this paper is the first to develop limit distribution theories for inference about the PRTE.
In nonseparable triangular models with a binary endogenous treatment and a binary instrumental variable, Vuong and Xu (2017) show that the individual treatment effects (ITEs) are identifiable. Feng, Vuong and Xu (2019) show that a kernel density esti
This paper examines methods of inference concerning quantile treatment effects (QTEs) in randomized experiments with matched-pairs designs (MPDs). Standard multiplier bootstrap inference fails to capture the negative dependence of observations within
Given the unconfoundedness assumption, we propose new nonparametric estimators for the reduced dimensional conditional average treatment effect (CATE) function. In the first stage, the nuisance functions necessary for identifying CATE are estimated b
Datasets from field experiments with covariate-adaptive randomizations (CARs) usually contain extra baseline covariates in addition to the strata indicators. We propose to incorporate these extra covariates via auxiliary regressions in the estimation
We propose a family of reproducing kernel ridge estimators for nonparametric and semiparametric policy evaluation. The framework includes (i) treatment effects of the population, of subpopulations, and of alternative populations; (ii) the decompositi