ﻻ يوجد ملخص باللغة العربية
We study finite-size effects on the convergence time in a continuous-opinion dynamics model. In the model, each individuals opinion is represented by a real number on a finite interval, e.g., $[0,1]$, and a uniformly randomly chosen individual updates its opinion by partially mimicking the opinion of a uniformly randomly chosen neighbor. We numerically find that the characteristic time to the convergence increases as the system size increases according to a particular functional form in the case of lattice networks. In contrast, unless the individuals perfectly copy the opinion of their neighbors in each opinion updating, the convergence time is approximately independent of the system size in the case of regular random graphs, uncorrelated scale-free networks, and complete graphs. We also provide a mean-field analysis of the model to understand the case of the complete graph.
In this article, I investigate the use of Bayesian updating rules applied to modeling social agents in the case of continuos opinions models. Given another agent statement about the continuous value of a variable $x$, we will see that interesting dyn
A model where agents show discrete behavior regarding their actions, but have continuous opinions that are updated by interacting with other agents is presented. This new updating rule is applied to both the voter and Sznajd models for interaction be
Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one
We study the effects of inhomogeneous influence of individuals on collective phenomena. We focus analytically on a typical model of the majority rule, applied to the completely connected agents. Two types of individuals $A$ and $B$ with different inf
In this work we tackle a kinetic-like model of opinions dynamics in a networked population endued with a quenched plurality and polarization. Additionally, we consider pairwise interactions that are restrictive, which is modeled with a smooth bounded