ترغب بنشر مسار تعليمي؟ اضغط هنا

No Discounted-Regret Learning in Adversarial Bandits with Delays

81   0   0.0 ( 0 )
 نشر من قبل Ilai Bistritz
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider a player that in each round $t$ out of $T$ rounds chooses an action and observes the incurred cost after a delay of $d_{t}$ rounds. The cost functions and the delay sequence are chosen by an adversary. We show that even if the players algorithms lose their no regret property due to too large delays, the expected discounted ergodic distribution of play converges to the set of coarse correlated equilibrium (CCE) if the algorithms have no discounted-regret. For a zero-sum game, we show that no discounted-regret is sufficient for the discounted ergodic average of play to converge to the set of Nash equilibria. We prove that the FKM algorithm with $n$ dimensions achieves a regret of $Oleft(nT^{frac{3}{4}}+sqrt{n}T^{frac{1}{3}}D^{frac{1}{3}}right)$ and the EXP3 algorithm with $K$ arms achieves a regret of $Oleft(sqrt{ln Kleft(KT+Dright)}right)$ even when $D=sum_{t=1}^{T}d_{t}$ and $T$ are unknown. These bounds use a novel doubling trick that provably retains the regret bound for when $D$ and $T$ are known. Using these bounds, we show that EXP3 and FKM have no discounted-regret even for $d_{t}=Oleft(tlog tright)$. Therefore, the CCE of a finite or convex unknown game can be approximated even when only delayed bandit feedback is available via simulation.

قيم البحث

اقرأ أيضاً

We study online learning in repeated first-price auctions with censored feedback, where a bidder, only observing the winning bid at the end of each auction, learns to adaptively bid in order to maximize her cumulative payoff. To achieve this goal, th e bidder faces a challenging dilemma: if she wins the bid--the only way to achieve positive payoffs--then she is not able to observe the highest bid of the other bidders, which we assume is iid drawn from an unknown distribution. This dilemma, despite being reminiscent of the exploration-exploitation trade-off in contextual bandits, cannot directly be addressed by the existing UCB or Thompson sampling algorithms in that literature, mainly because contrary to the standard bandits setting, when a positive reward is obtained here, nothing about the environment can be learned. In this paper, by exploiting the structural properties of first-price auctions, we develop the first learning algorithm that achieves $O(sqrt{T}log^2 T)$ regret bound when the bidders private values are stochastically generated. We do so by providing an algorithm on a general class of problems, which we call monotone group contextual bandits, where the same regret bound is established under stochastically generated contexts. Further, by a novel lower bound argument, we characterize an $Omega(T^{2/3})$ lower bound for the case where the contexts are adversarially generated, thus highlighting the impact of the contexts generation mechanism on the fundamental learning limit. Despite this, we further exploit the structure of first-price auctions and develop a learning algorithm that operates sample-efficiently (and computationally efficiently) in the presence of adversarially generated private values. We establish an $O(sqrt{T}log^3 T)$ regret bound for this algorithm, hence providing a complete characterization of optimal learning guarantees for this problem.
We study adversarial scaling, a multi-armed bandit model where rewards have a stochastic and an adversarial component. Our model captures display advertising where the click-through-rate can be decomposed to a (fixed across time) arm-quality componen t and a non-stochastic user-relevance component (fixed across arms). Despite the relative stochasticity of our model, we demonstrate two settings where most bandit algorithms suffer. On the positive side, we show that two algorithms, one from the action elimination and one from the mirror descent family are adaptive enough to be robust to adversarial scaling. Our results shed light on the robustness of adaptive parameter selection in stochastic bandits, which may be of independent interest.
We propose a new algorithm for adversarial multi-armed bandits with unrestricted delays. The algorithm is based on a novel hybrid regularizer applied in the Follow the Regularized Leader (FTRL) framework. It achieves $mathcal{O}(sqrt{kn}+sqrt{Dlog(k) })$ regret guarantee, where $k$ is the number of arms, $n$ is the number of rounds, and $D$ is the total delay. The result matches the lower bound within constants and requires no prior knowledge of $n$ or $D$. Additionally, we propose a refined tuning of the algorithm, which achieves $mathcal{O}(sqrt{kn}+min_{S}|S|+sqrt{D_{bar S}log(k)})$ regret guarantee, where $S$ is a set of rounds excluded from delay counting, $bar S = [n]setminus S$ are the counted rounds, and $D_{bar S}$ is the total delay in the counted rounds. If the delays are highly unbalanced, the latter regret guarantee can be significantly tighter than the former. The result requires no advance knowledge of the delays and resolves an open problem of Thune et al. (2019). The new FTRL algorithm and its refined tuning are anytime and require no doubling, which resolves another open problem of Thune et al. (2019).
This paper investigates the adversarial Bandits with Knapsack (BwK) online learning problem, where a player repeatedly chooses to perform an action, pays the corresponding cost, and receives a reward associated with the action. The player is constrai ned by the maximum budget $B$ that can be spent to perform actions, and the rewards and the costs of the actions are assigned by an adversary. This problem has only been studied in the restricted setting where the reward of an action is greater than the cost of the action, while we provide a solution in the general setting. Namely, we propose EXP3.BwK, a novel algorithm that achieves order optimal regret. We also propose EXP3++.BwK, which is order optimal in the adversarial BwK setup, and incurs an almost optimal expected regret with an additional factor of $log(B)$ in the stochastic BwK setup. Finally, we investigate the case of having large costs for the actions (i.e., they are comparable to the budget size $B$), and show that for the adversarial setting, achievable regret bounds can be significantly worse, compared to the case of having costs bounded by a constant, which is a common assumption within the BwK literature.
We investigate multiarmed bandits with delayed feedback, where the delays need neither be identical nor bounded. We first prove that delayed Exp3 achieves the $O(sqrt{(KT + D)ln K} )$ regret bound conjectured by Cesa-Bianchi et al. [2019] in the case of variable, but bounded delays. Here, $K$ is the number of actions and $D$ is the total delay over $T$ rounds. We then introduce a new algorithm that lifts the requirement of bounded delays by using a wrapper that skips rounds with excessively large delays. The new algorithm maintains the same regret bound, but similar to its predecessor requires prior knowledge of $D$ and $T$. For this algorithm we then construct a novel doubling scheme that forgoes the prior knowledge requirement under the assumption that the delays are available at action time (rather than at loss observation time). This assumption is satisfied in a broad range of applications, including interaction with servers and service providers. The resulting oracle regret bound is of order $min_beta (|S_beta|+beta ln K + (KT + D_beta)/beta)$, where $|S_beta|$ is the number of observations with delay exceeding $beta$, and $D_beta$ is the total delay of observations with delay below $beta$. The bound relaxes to $O (sqrt{(KT + D)ln K} )$, but we also provide examples where $D_beta ll D$ and the oracle bound has a polynomially better dependence on the problem parameters.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا