ترغب بنشر مسار تعليمي؟ اضغط هنا

Detectability of Rocky-Vapour Atmospheres on Super-Earths with Ariel

231   0   0.0 ( 0 )
 نشر من قبل Yuichi Ito
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ariel will mark the dawn of a new era as the first large-scale survey characterising exoplanetary atmospheres with science objectives to address fundamental questions about planetary composition, evolution and formation. In this study, we explore the detectability of atmospheres vaporised from magma oceans on dry, rocky Super-Earths orbiting very close to their host stars. The detection of such atmospheres would provide a definitive piece of evidence for rocky planets but are challenging measurements with currently available instruments due to their small spectral signatures. However, some of the hottest planets are believed to have atmospheres composed of vaporised rock, such as Na and SiO, with spectral signatures bright enough to be detected through eclipse observations with planned space-based telescopes. In this study, we find that rocky super-Earths with a irradiation temperature of 3000 K and a distance from Earth of up to 20 pc, as well as planets hotter than 3500 K and closer than 50 pc, have SiO features which are potentially detectable in eclipse spectra observed with Ariel.



قيم البحث

اقرأ أيضاً

Hot super-Earths likely possess minimal atmospheres established through vapor saturation equilibrium with the ground. We solve the hydrodynamics of these tenuous atmospheres at the surface of Corot-7b, Kepler 10b and 55 Cnc-e, including idealized tre atments of magnetic drag and ohmic dissipation. We find that atmospheric pressures remain close to their local saturation values in all cases. Despite the emergence of strongly supersonic winds which carry sublimating mass away from the substellar point, the atmospheres do not extend much beyond the day-night terminators. Ground temperatures, which determine the planetary thermal (infrared) signature, are largely unaffected by exchanges with the atmosphere and thus follow the effective irradiation pattern. Atmospheric temperatures, however, which control cloud condensation and thus albedo properties, can deviate substantially from the irradiation pattern. Magnetic drag and ohmic dissipation can also strongly impact the atmospheric behavior, depending on atmospheric composition and the planetary magnetic field strength. We conclude that hot super-Earths could exhibit interesting signatures in reflection (and possibly in emission) which would trace a combination of their ground, atmospheric and magnetic properties.
76 - X. Dumusque , O. Turner , C. Dorn 2019
TESS is revolutionising the search for planets orbiting bright and nearby stars. In sectors 3 and 4, TESS observed TOI-402 (TIC-120896927), a bright V=9.1 K1 dwarf also known as HD 15337, and found two transiting signals with period of 4.76 and 17.18 days and radius of 1.90 and 2.21,Rearth. This star was observed as part of the radial-velocity search for planets using the HARPS spectrometer, and 85 precise radial-velocity measurements were obtained over a period of 14 years. In this paper, we analyse the HARPS radial-velocity measurements in hand to confirm the planetary nature of these two signals. By reanalysing TESS photometry and host star parameters using EXOFASTv2, we find that TOI-402.01 and TOI-402.02 have periods of 4.75642$pm$0.00021 and 17.1784$pm$0.0016 days and radii of 1.70$pm$0.06 and 2.52$pm$0.11,Rearth,(precision 3.6 and 4.2%), respectively. By analysing the HARPS radial-velocity measurements, we find that those planets are both super-Earths with masses of 7.20$pm$0.81 and 8.79$pm$1.67,Mearth,(precision 11.3 and 19.0%), and small eccentricities compatible with zero at 2$sigma$. Although having rather similar masses, the radius of these two planets is really different, putting them on different sides of the radius gap. With stellar irradiation 160 times more important than Earth for TOI-402.01 and only 29 times more for TOI-402.02, it is likely that photo-evaporation is at the origin of this radius difference. Those two planets, being in the same system and therefore being in the same irradiation environment are therefore extremely important to perform comparative exoplanetology across the evaporation valley and thus bring constraints on the mechanisms responsible for the radius gap.
UV radiation can induce photochemical processes in exoplanet atmospheres and produce haze particles. Recent observations suggest that haze and/or cloud layers could be present in the upper atmospheres of exoplanets. Haze particles play an important r ole in planetary atmospheres and may provide a source of organic material to the surface which may impact the origin or evolution of life. However, very little information is known about photochemical processes in cool, high-metallicity exoplanetary atmospheres. Previously, we investigated haze formation and particle size distribution in laboratory atmosphere simulation experiments using AC plasma as the energy source. Here, we use UV photons to initiate the chemistry rather than the AC plasma, since photochemistry driven by UV radiation is important for understanding exoplanet atmospheres. We present photochemical haze formation in current UV experiments, we investigated a range of atmospheric metallicities (100x, 1000x, and 10000x solar metallicity) at three temperatures (300 K, 400 K, and 600 K). We find that photochemical hazes are generated in all simulated atmospheres with temperature-dependent production rates: the particles produced in each metallicity group decrease as the temperature increases. The images taken with atomic force microscopy show the particle size (15-190 nm) varies with temperature and metallicity. Our laboratory experimental results provide new insight into the formation and properties of photochemical haze, which could guide exoplanet atmosphere modeling and help to analyze and interpret current and future observations of exoplanets.
Motivated by recent discoveries of low-density super-Earths with short orbital periods, we have investigated in-situ accretion of H-He atmospheres on rocky bodies embedded in dissipating warm disks, by simulating quasi-static evolution of atmospheres that connect to the ambient disk. We have found that the atmospheric evolution has two distinctly different outcomes, depending on the rocky bodys mass: While the atmospheres on massive rocky bodies undergo runaway disk-gas accretion, those on light rocky bodies undergo significant erosion during disk dispersal. In the atmospheric erosion, the heat content of the rocky body that was previously neglected plays an important role. We have also realized that the atmospheric mass is rather sensitive to disk temperature in the mass range of interest in this study. Our theory is applied to recently-detected super-Earths orbiting Kepler-11 to examine the possibility that the planets are rock-dominated ones with relatively thick H-He atmospheres. The application suggests that the in-situ formation of the relatively thick H-He atmospheres inferred by structure modeling is possible only under restricted conditions; namely, relatively slow disk dissipation and/or cool environments. This study demonstrates that low-density super-Earths provide important clues to understanding of planetary accretion and disk evolution.
Hydrogen cyanide (HCN) is a key feedstock molecule for the production of lifes building blocks. The formation of HCN in an N$_2$-rich atmospheres requires first that the triple bond between N$equiv$N be severed, and then that the atomic nitrogen find a carbon atom. These two tasks can be accomplished via photochemistry, lightning, impacts, or volcanism. The key requirements for producing appreciable amounts of HCN are the free availability of N$_2$ and a local carbon to oxygen ratio of C/O $geq 1$. We discuss the chemical mechanisms by which HCN can be formed and destroyed on rocky exoplanets with Earth-like N$_2$ content and surface water inventories, varying the oxidation state of the dominant carbon-containing atmospheric species. HCN is most readily produced in an atmosphere rich in methane (CH$_4$) or acetylene (C$_2$H$_2$), but can also be produced in significant amounts ($> 1$ ppm) within CO-dominated atmospheres. Methane is not necessary for the production of HCN. We show how destruction of HCN in a CO$_2$-rich atmosphere depends critically on the poorly-constrained energetic barrier for the reaction of HCN with atomic oxygen. We discuss the implications of our results for detecting photochemically produced HCN, for concentrating HCN on the planets surface, and its importance for prebiotic chemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا