ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot, rocky and warm, puffy super-Earths orbiting TOI-402 (HD 15337)

77   0   0.0 ( 0 )
 نشر من قبل Xavier Dumusque
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

TESS is revolutionising the search for planets orbiting bright and nearby stars. In sectors 3 and 4, TESS observed TOI-402 (TIC-120896927), a bright V=9.1 K1 dwarf also known as HD 15337, and found two transiting signals with period of 4.76 and 17.18 days and radius of 1.90 and 2.21,Rearth. This star was observed as part of the radial-velocity search for planets using the HARPS spectrometer, and 85 precise radial-velocity measurements were obtained over a period of 14 years. In this paper, we analyse the HARPS radial-velocity measurements in hand to confirm the planetary nature of these two signals. By reanalysing TESS photometry and host star parameters using EXOFASTv2, we find that TOI-402.01 and TOI-402.02 have periods of 4.75642$pm$0.00021 and 17.1784$pm$0.0016 days and radii of 1.70$pm$0.06 and 2.52$pm$0.11,Rearth,(precision 3.6 and 4.2%), respectively. By analysing the HARPS radial-velocity measurements, we find that those planets are both super-Earths with masses of 7.20$pm$0.81 and 8.79$pm$1.67,Mearth,(precision 11.3 and 19.0%), and small eccentricities compatible with zero at 2$sigma$. Although having rather similar masses, the radius of these two planets is really different, putting them on different sides of the radius gap. With stellar irradiation 160 times more important than Earth for TOI-402.01 and only 29 times more for TOI-402.02, it is likely that photo-evaporation is at the origin of this radius difference. Those two planets, being in the same system and therefore being in the same irradiation environment are therefore extremely important to perform comparative exoplanetology across the evaporation valley and thus bring constraints on the mechanisms responsible for the radius gap.

قيم البحث

اقرأ أيضاً

Ultra-short period (USP) planets are a class of exoplanets with periods shorter than one day. The origin of this sub-population of planets is still unclear, with different formation scenarios highly dependent on the composition of the USP planets. A better understanding of this class of exoplanets will, therefore, require an increase in the sample of such planets that have accurate and precise masses and radii, which also includes estimates of the level of irradiation and information about possible companions. Here we report a detailed characterization of a USP planet around the solar-type star HD 80653 $equiv$ EP 251279430 using the K2 light curve and 108 precise radial velocities obtained with the HARPS-N spectrograph, installed on the Telescopio Nazionale Galileo. From the K2 C16 data, we found one super-Earth planet ($R_{b}=1.613pm0.071 R_{oplus}$) transiting the star on a short-period orbit ($P_{rm b}=0.719573pm0.000021$ d). From our radial velocity measurements, we constrained the mass of HD 80653 b to $M_{b}=5.60pm0.43 M_{oplus}$. We also detected a clear long-term trend in the radial velocity data. We derived the fundamental stellar parameters and determined a radius of $R_{star}=1.22pm0.01 R_{odot}$ and mass of $M_{star}=1.18pm0.04 M_{odot}$, suggesting that HD 80653, has an age of $2.7pm1.2$ Gyr. The bulk density ($rho_{b} = 7.4 pm 1.1$ g cm$^{-3}$) of the planet is consistent with an Earth-like composition of rock and iron with no thick atmosphere. Our analysis of the K2 photometry also suggests hints of a shallow secondary eclipse with a depth of 8.1$pm$3.7 ppm. Flux variations along the orbital phase are consistent with zero. The most important contribution might come from the day-side thermal emission from the surface of the planet at $Tsim3480$ K.
We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASAs Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observ ations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of $M_P=0.138pm0.023$,$rm{M_J}$ ($43.9pm7.3$,$M_{rm oplus}$), a radius of $R_P=0.639pm0.013$,$rm{R_J}$ ($7.16pm0.15$,$R_{rm oplus}$), bulk density of $0.65^{+0.12}_{-0.11}$ (cgs), and period $18.38818^{+0.00085}_{-0.00084}$,$rm{days}$. TOI-257b orbits a bright ($mathrm{V}=7.612$,mag) somewhat evolved late F-type star with $M_*=1.390pm0.046$,$rm{M_{odot}}$, $R_*=1.888pm0.033$,$rm{R_{odot}}$, $T_{rm eff}=6075pm90$,$rm{K}$, and $vsin{i}=11.3pm0.5$,km,s$^{-1}$. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a $sim71$,day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars ($sim100$) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.
139 - Wei Zhu 2015
Using the Kepler planet sample from Buchhave et al. and the statistical method clarified by Schlaufman, I show that the shorter-period super-Earths have a different dependence on the host star metallicity from the longer-period super-Earths, with the transition period being in the period range from 70 to 100 days. The hosts of shorter-period super-Earths are on average more metal-rich than those of longer-period super-Earths. The existence of such a transition period cannot be explained by any single theory of super-Earth formation, suggesting that super-Earths have formed via at least two mechanisms.
One of the main objectives of the Transiting Exoplanet Survey Satellite ({TESS}) mission is the discovery of small rocky planets around relatively bright nearby stars. Here, we report the discovery and characterization of the transiting super-Earth p lanet orbiting LHS~1478 (TOI-1640). The star is an inactive red dwarf ($J sim 9.6$,mag and spectral type m3,V) with mass and radius estimates of $0.20pm0.01$,$M_{odot}$ and $0.25pm0.01$,$R_{odot}$, respectively, and an effective temperature of $3381pm54$,K.It was observed by tess in four sectors. These data revealed a transit-like feature with a period of 1.949 days. We combined the TESS data with three ground-based transit measurements, 57 radial velocity (RV) measurements from CARMENES, and 13 RV measurements from IRD, determining that the signal is produced by a planet with a mass of $2.33^{+0.20}_{-0.20}$,$M_{oplus}$ and a radius of $1.24^{+0.05}_{-0.05}$,$R_{oplus}$. The resulting bulk density of this planet is 6.67,g,cm$^{-3}$, which is consistent with a rocky planet with an Fe- and MgSiO$_3$-dominated composition. Although the planet would be too hot to sustain liquid water on its surface (its equilibrium temperature is about $sim$595,K, suggesting a Venus-like atmosphere), spectroscopic metrics based on the capabilities of the forthcoming James Webb Space Telescope and the fact that the host star is rather inactive indicate that this is one of the most favorable known rocky exoplanets for atmospheric characterization.
Hot super-Earths likely possess minimal atmospheres established through vapor saturation equilibrium with the ground. We solve the hydrodynamics of these tenuous atmospheres at the surface of Corot-7b, Kepler 10b and 55 Cnc-e, including idealized tre atments of magnetic drag and ohmic dissipation. We find that atmospheric pressures remain close to their local saturation values in all cases. Despite the emergence of strongly supersonic winds which carry sublimating mass away from the substellar point, the atmospheres do not extend much beyond the day-night terminators. Ground temperatures, which determine the planetary thermal (infrared) signature, are largely unaffected by exchanges with the atmosphere and thus follow the effective irradiation pattern. Atmospheric temperatures, however, which control cloud condensation and thus albedo properties, can deviate substantially from the irradiation pattern. Magnetic drag and ohmic dissipation can also strongly impact the atmospheric behavior, depending on atmospheric composition and the planetary magnetic field strength. We conclude that hot super-Earths could exhibit interesting signatures in reflection (and possibly in emission) which would trace a combination of their ground, atmospheric and magnetic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا