ﻻ يوجد ملخص باللغة العربية
A low-temperature ultra-high vacuum scanning probe microscopy (SPM) system with molecular beam epitaxy capability and optical access was conceived, built, and tested in our lab. The design of the whole system is discussed here, with special emphasis on some critical parts. We made an SPM scanner head with a modified Pan-type design, enclosed by a double-layer cold room under a bath type cryostat. The scanner head is very rigid, compatible with optical access paths, and can accommodate both scanning tunneling microscope (STM) tips and atomic force sensors. Two piezo-actuated focus-lens stages are mounted on the two sides of the cold room to couple light in and out. To demonstrate the system performance, we performed STM and scanning tunneling spectroscopy studies. The herringbone reconstruction and atomic structure of Au(111) surface were clearly resolved. The dI/dV spectra of an Au(111) surface were obtained at 5 K. In addition, a periodic 2D tellurium (Te) structure was grown on Au(111) surface using MBE.
Fabrication, characterization and comparison of gold and graphene micro- and nano-size Hall sensors for room temperature scanning magnetic field microscopy applications is presented. The Hall sensors with active areas from 5 $mu$m down to 50 nm were
We present the design of a highly compact High Field Scanning Probe Microscope (HF-SPM) for operation at cryogenic temperatures in an extremely high magnetic field, provided by a water-cooled Bitter magnet able to reach 38 T. The HF-SPM is 14 mm in d
We present the design and performance of a cryogenic scanning tunneling microscope (STM) which operates inside a water-cooled Bitter magnet, which can attain a magnetic field of up to 38 T. Due to the high vibration environment generated by the magne
The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distor
We present a probe-type scanning tunneling microscope (STM) with atomic resolution that is designed to be directly inserted and work in a harsh vibrational cryogen-free superconducting magnet system. When a commercial variable temperature insert (VTI