ﻻ يوجد ملخص باللغة العربية
We approach the Torelli problem of recostructing a curve from its Jacobian from a computational point of view. Following Dubrovin, we design a machinery to solve this problem effectively, which builds on methods in numerical algebraic geometry. We verify this methods via numerical experiments with curves up to genus 7.
Let $K$ be an algebraically closed field of characteristic different from 2, $g$ a positive integer, $f(x)$ a degree $(2g+1)$ polynomial with coefficients in $K$ and without multiple roots, $C:y^2=f(x)$ the corresponding genus $g$ hyperelliptic curve
Let $K$ be an algebraically closed field of characteristic different from 2, $g$ a positive integer, $f(x)$ a degree $(2g+1)$ polynomial with coefficients in $K$ and without multiple roots, $C: y^2=f(x)$ the corresponding genus $g$ hyperelliptic curv
In this article, we show that in each of four standard families of hyperelliptic curves, there is a density-$1$ subset of members with the property that their Jacobians have adelic Galois representation with image as large as possible. This result co
Let $K$ be a field of prime characteristic $p$, $n>4 $ an integer, $f(x)$ an irreducible polynomial over $K$ of degree $n$, whose Galois group is either the full symmetric group $S_n$ or the alternating group $A_n$. Let $l$ be an odd prime different
Let ${cal M}_{g,[n]}$, for $2g-2+n>0$, be the D-M moduli stack of smooth curves of genus $g$ labeled by $n$ unordered distinct points. The main result of the paper is that a finite, connected etale cover ${cal M}^l$ of ${cal M}_{g,[n]}$, defined over