ترغب بنشر مسار تعليمي؟ اضغط هنا

Division by 2 on hyperelliptic curves and jacobians

140   0   0.0 ( 0 )
 نشر من قبل Yuri Zarhin G.
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Yuri G. Zarhin




اسأل ChatGPT حول البحث

Let $K$ be an algebraically closed field of characteristic different from 2, $g$ a positive integer, $f(x)$ a degree $(2g+1)$ polynomial with coefficients in $K$ and without multiple roots, $C: y^2=f(x)$ the corresponding genus $g$ hyperelliptic curve over $K$ and $J$ the jacobian of $C$. We identify $C$ with the image of its canonical embedding into $J$ (the infinite point of $C$ goes to the zero point of $J$). For each point $P=(a,b)in C(K)$ there are $2^{2g}$ points $frac{1}{2}P in J(K)$. We describe explicitly the Mumford represesentations of all $frac{1}{2}P$. The rationality questions for $frac{1}{2}P$ are also discussed.



قيم البحث

اقرأ أيضاً

115 - Yuri G. Zarhin 2018
Let $K$ be an algebraically closed field of characteristic different from 2, $g$ a positive integer, $f(x)$ a degree $(2g+1)$ polynomial with coefficients in $K$ and without multiple roots, $C:y^2=f(x)$ the corresponding genus $g$ hyperelliptic curve over K, and $J$ the jacobian of $C$. We identify $C$ with the image of its canonical embedding into $J$ (the infinite point of $C$ goes to the identity element of $J$). It is well known that for each $mathfrak{b} in J(K)$ there are exactly $2^{2g}$ elements $mathfrak{a} in J(K)$ such that $2mathfrak{a}=mathfrak{b}$. M. Stoll constructed an algorithm that provides Mumford representations of all such $mathfrak{a}$, in terms of the Mumford representation of $mathfrak{b}$. The aim of this paper is to give explicit formulas for Mumford representations of all such $mathfrak{a}$, when $mathfrak{b}in J(K)$ is given by $P=(a,b) in C(K)subset J(K)$ in terms of coordinates $a,b$. We also prove that if $g>1$ then $C(K)$ does not contain torsion points with order between $3$ and $2g$.
93 - Yuri G. Zarhin 2021
Let $K$ be a field of characteristic different from $2$, $bar{K}$ its algebraic closure. Let $n ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without r epeated roots. Let us consider genus $(n-1)/2$ hyperelliptic curves $C_f: y^2=f(x)$ and $C_h: y^2=h(x)$, and their jacobians $J(C_f)$ and $J(C_h)$, which are $(n-1)/2$-dimensional abelian varieties defined over $K$. Suppose that one of the polynomials is irreducible and the other reducible. We prove that if $J(C_f)$ and $J(C_h)$ are isogenous over $bar{K}$ then both jacobians are abelian varieties of CM type with multiplication by the field of $n$th roots of $1$.
193 - Yuri G. Zarhin 2009
We prove that the jacobian of a hyperelliptic curve $y^2=(x-t)h(x)$ has no nontrivial endomorphisms over an algebraic closure of the ground field $K$ of characteristic zero if $t in K$ and the Galois group of the polynomial $h(x)$ over $K$ is very bi g and $deg(h)$ is an even number >8. (The case of odd $deg(h)>3$ follows easily from previous results of the author.)
302 - Yuri G. Zarhin 2016
We discuss a non-computational elementary approach to a well-known criterion of divisibility by 2 in the group of rational points on an elliptic curve.
106 - Ke Chen , Xin Lu , Kang Zuo 2016
In this paper we study the Coleman-Oort conjecture for superelliptic curves, i.e., curves defined by affine equations $y^n=F(x)$ with $F$ a separable polynomial. We prove that up to isomorphism there are at most finitely many superelliptic curves of fixed genus $ggeq 8$ with CM Jacobians. The proof relies on the geometric structures of Shimura subvarieties in Siegel modular varieties and the stability properties of Higgs bundles associated to fibred surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا