ترغب بنشر مسار تعليمي؟ اضغط هنا

Convolutional versus Self-Organized Operational Neural Networks for Real-World Blind Image Denoising

397   0   0.0 ( 0 )
 نشر من قبل Junaid Malik
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Real-world blind denoising poses a unique image restoration challenge due to the non-deterministic nature of the underlying noise distribution. Prevalent discriminative networks trained on synthetic noise models have been shown to generalize poorly to real-world noisy images. While curating real-world noisy images and improving ground truth estimation procedures remain key points of interest, a potential research direction is to explore extensions to the widely used convolutional neuron model to enable better generalization with fewer data and lower network complexity, as opposed to simply using deeper Convolutional Neural Networks (CNNs). Operational Neural Networks (ONNs) and their recent variant, Self-organized ONNs (Self-ONNs), propose to embed enhanced non-linearity into the neuron model and have been shown to outperform CNNs across a variety of regression tasks. However, all such comparisons have been made for compact networks and the efficacy of deploying operational layers as a drop-in replacement for convolutional layers in contemporary deep architectures remains to be seen. In this work, we tackle the real-world blind image denoising problem by employing, for the first time, a deep Self-ONN. Extensive quantitative and qualitative evaluations spanning multiple metrics and four high-resolution real-world noisy image datasets against the state-of-the-art deep CNN network, DnCNN, reveal that deep Self-ONNs consistently achieve superior results with performance gains of up to 1.76dB in PSNR. Furthermore, Self-ONNs with half and even quarter the number of layers that require only a fraction of computational resources as that of DnCNN can still achieve similar or better results compared to the state-of-the-art.

قيم البحث

اقرأ أيضاً

Discriminative learning based on convolutional neural networks (CNNs) aims to perform image restoration by learning from training examples of noisy-clean image pairs. It has become the go-to methodology for tackling image restoration and has outperfo rmed the traditional non-local class of methods. However, the top-performing networks are generally composed of many convolutional layers and hundreds of neurons, with trainable parameters in excess of several millions. We claim that this is due to the inherent linear nature of convolution-based transformation, which is inadequate for handling severe restoration problems. Recently, a non-linear generalization of CNNs, called the operational neural networks (ONN), has been shown to outperform CNN on AWGN denoising. However, its formulation is burdened by a fixed collection of well-known nonlinear operators and an exhaustive search to find the best possible configuration for a given architecture, whose efficacy is further limited by a fixed output layer operator assignment. In this study, we leverage the Taylor series-based function approximation to propose a self-organizing variant of ONNs, Self-ONNs, for image restoration, which synthesizes novel nodal transformations onthe-fly as part of the learning process, thus eliminating the need for redundant training runs for operator search. In addition, it enables a finer level of operator heterogeneity by diversifying individual connections of the receptive fields and weights. We perform a series of extensive ablation experiments across three severe image restoration tasks. Even when a strict equivalence of learnable parameters is imposed, Self-ONNs surpass CNNs by a considerable margin across all problems, improving the generalization performance by up to 3 dB in terms of PSNR.
Convolutional Neural Networks (CNNs) have recently become a favored technique for image denoising due to its adaptive learning ability, especially with a deep configuration. However, their efficacy is inherently limited owing to their homogenous netw ork formation with the unique use of linear convolution. In this study, we propose a heterogeneous network model which allows greater flexibility for embedding additional non-linearity at the core of the data transformation. To this end, we propose the idea of an operational neuron or Operational Neural Networks (ONN), which enables a flexible non-linear and heterogeneous configuration employing both inter and intra-layer neuronal diversity. Furthermore, we propose a robust operator search strategy inspired by the Hebbian theory, called the Synaptic Plasticity Monitoring (SPM) which can make data-driven choices for non-linearities in any architecture. An extensive set of comparative evaluations of ONNs and CNNs over two severe image denoising problems yield conclusive evidence that ONNs enriched by non-linear operators can achieve a superior denoising performance against CNNs with both equivalent and well-known deep configurations.
Deep convolutional networks often append additive constant (bias) terms to their convolution operations, enabling a richer repertoire of functional mappings. Biases are also used to facilitate training, by subtracting mean response over batches of tr aining images (a component of batch normalization). Recent state-of-the-art blind denoising methods (e.g., DnCNN) seem to require these terms for their success. Here, however, we show that these networks systematically overfit the noise levels for which they are trained: when deployed at noise levels outside the training range, performance degrades dramatically. In contrast, a bias-free architecture -- obtained by removing the constant terms in every layer of the network, including those used for batch normalization-- generalizes robustly across noise levels, while preserving state-of-the-art performance within the training range. Locally, the bias-free network acts linearly on the noisy image, enabling direct analysis of network behavior via standard linear-algebraic tools. These analyses provide interpretations of network functionality in terms of nonlinear adaptive filtering, and projection onto a union of low-dimensional subspaces, connecting the learning-based method to more traditional denoising methodology.
A technique named Feature Learning from Image Markers (FLIM) was recently proposed to estimate convolutional filters, with no backpropagation, from strokes drawn by a user on very few images (e.g., 1-3) per class, and demonstrated for coconut-tree im age classification. This paper extends FLIM for fully connected layers and demonstrates it on different image classification problems. The work evaluates marker selection from multiple users and the impact of adding a fully connected layer. The results show that FLIM-based convolutional neural networks can outperform the same architecture trained from scratch by backpropagation.
Convolutional neural networks (CNN) have recently achieved state-of-the-art results in various applications. In the case of image recognition, an ideal model has to learn independently of the training data, both local dependencies between the three c omponents (R,G,B) of a pixel, and the global relations describing edges or shapes, making it efficient with small or heterogeneous datasets. Quaternion-valued convolutional neural networks (QCNN) solved this problematic by introducing multidimensional algebra to CNN. This paper proposes to explore the fundamental reason of the success of QCNN over CNN, by investigating the impact of the Hamilton product on a color image reconstruction task performed from a gray-scale only training. By learning independently both internal and external relations and with less parameters than real valued convolutional encoder-decoder (CAE), quaternion convolutional encoder-decoders (QCAE) perfectly reconstructed unseen color images while CAE produced worst and gray-sca

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا