ﻻ يوجد ملخص باللغة العربية
A widely recognized difficulty in federated learning arises from the statistical heterogeneity among clients: local datasets often come from different but not entirely unrelated distributions, and personalization is, therefore, necessary to achieve optimal results from each individuals perspective. In this paper, we show how the excess risks of personalized federated learning with a smooth, strongly convex loss depend on data heterogeneity from a minimax point of view. Our analysis reveals a surprising theorem of the alternative for personalized federated learning: there exists a threshold such that (a) if a certain measure of data heterogeneity is below this threshold, the FedAvg algorithm [McMahan et al., 2017] is minimax optimal; (b) when the measure of heterogeneity is above this threshold, then doing pure local training (i.e., clients solve empirical risk minimization problems on their local datasets without any communication) is minimax optimal. As an implication, our results show that the presumably difficult (infinite-dimensional) problem of adapting to client-wise heterogeneity can be reduced to a simple binary decision problem of choosing between the two baseline algorithms. Our analysis relies on a new notion of algorithmic stability that takes into account the nature of federated learning.
Federated learning is an appealing framework for analyzing sensitive data from distributed health data networks. Under this framework, data partners at local sites collaboratively build an analytical model under the orchestration of a coordinating si
The recently proposed SPARse Factor Analysis (SPARFA) framework for personalized learning performs factor analysis on ordinal or binary-valued (e.g., correct/incorrect) graded learner responses to questions. The underlying factors are termed concepts
This paper presents an alternative approach to p-values in regression settings. This approach, whose origins can be traced to machine learning, is based on the leave-one-out bootstrap for prediction error. In machine learning this is called the out-o
As artificial intelligence (AI)-empowered applications become widespread, there is growing awareness and concern for user privacy and data confidentiality. This has contributed to the popularity of federated learning (FL). FL applications often face
As data is generated and stored almost everywhere, learning a model from a data-decentralized setting is a task of interest for many AI-driven service providers. Although federated learning is settled down as the main solution in such situations, the