ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Evaporation Enabled Ultrathin Polymeric Coatings on Nanoporous Substrates for Highly Permeable Membranes

218   0   0.0 ( 0 )
 نشر من قبل Martin Steinhart
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Membranes derived from ultrathin polymeric films are promising to meet fast separations, but currently available approaches to produce polymer films with greatly reduced thicknesses on porous supports still faces challenges. Here, defect-free ultrathin polymer covering films (UPCFs) are realized by a facile general approach of rapid solvent evaporation. By fast evaporating dilute polymer solutions, we realize ultrathin coating (~30 nm) of porous substrates exclusively on the top surface, forming UPCFs with a block copolymer of polystyrene-block-poly(2-vinyl pyridine) at room temperature or a homopolymer of poly(vinyl alcohol) (PVA) at elevated temperatures. With subsequent selective swelling to the block copolymer and crosslinking to PVA, the resulting bi-layered composite structures serve as highly permeable membranes delivering ~2-10 times higher permeability in ultrafiltration and pervaporation applications than state-of-the-art separation membranes with similar rejections and selectivities. This work opens up a new, facile avenue for the controllable fabrication of ultrathin coatings on porous substrates, which shows great potentials in membrane-based separations and other areas.



قيم البحث

اقرأ أيضاً

One of the most promising applications in nanoscience is the design of new materials to improve water permeability and selectivity of nanoporous membranes. Understanding the molecular architecture behind these fascinating structures and how it impact s the water flow is an intricate but necessary task. We studied here, the water flux through multi-layered nanoporous molybdenum disulfide (MLNMoS$_2$) membranes with different nanopore sizes and length. Molecular dynamics simulations show that the permeability do not increase with the inverse of the membrane thickness, violating the classical hydrodynamic behavior. The data also reveals that the water dynamics is slower than that observed in frictionless carbon nanotubes and multi-layer graphene membranes, which we explain in terms of an anchor mechanism observed in between layers. We show that the membrane permeability is critically dependent on the nanopore architecture, bringing important insights into the manufacture of new desalination membranes.
Highly flexible electromagnetic interference (EMI) shielding material with excellent shielding performance is of great significance to practical applications in next-generation flexible devices. However, most EMI materials suffer from insufficient fl exibility and complicated preparation methods. In this study, we propose a new scheme to fabricate a magnetic Ni particle/Ag matrix composite ultrathin film on a paper surface. For a ~2 micro meter thick film on paper, the EMI shielding effectiveness (SE) was found to be 46.2 dB at 8.1 GHz after bending 200,000 times over a radius of ~2 mm. The sheet resistance (Rsq) remained lower than 2.30 Ohm after bending 200,000 times. Contrary to the change in Rsq, the EMI SE of the film generally increased as the weight ratio of Ag to Ni increased, in accordance with the principle that EMI SE is positively related with an increase in electrical conductivity. Desirable EMI shielding ability, ultrahigh flexibility, and simple processing provide this material with excellent application prospects.
A thin polymeric film in contact with a fluid body may leach low-molecular-weight compounds into the fluid. If this fluid is a small droplet, the compound concentration within the liquid increases due to ongoing leaching in combination with the evapo ration of the droplet. This may eventually lead to an inversion of the transport process and a redistribution of the compounds within the thin film. In order to gain an understanding of the compound redistribution, we apply a macroscopic model for the evaporation of a droplet and combine that with a diffusion model for the compound transport. In the model, material deposition and the resulting contact line pinning are associated with the precipitation of a fraction of the dissolved material. We find three power law regimes for the size of the deposit area as a function of the initial droplet size, dictated by the competition between evaporation, diffusion and the initial compound concentrations in the droplet and the thin film. The strength of the contact line pinning determines the deposition profile of the precipitate, characterised by a pronounced edge and a linearly decaying profile towards the centre of the stain. Our predictions for the concentration profile within the solid substrate resemble patterns found experimentally.
When a drop of water is placed on a rough surface, there are two possible extreme regimes of wetting: the one called Cassie-Baxter (CB) with air pockets trapped underneath the droplet and the one characterized by the homogeneous wetting of the surfac e, called the Wenzel (W) state. A way to investigate the transition between these two states is by means of evaporation experiments, in which the droplet starts in a CB state and, as its volume decreases, penetrates the surfaces grooves, reaching a W state. Here we present a theoretical model based on the global interfacial energies for CB and W states that allows us to predict the thermodynamic wetting state of the droplet for a given volume and surface texture. We first analyze the influence of the surface geometric parameters on the droplets final wetting state with constant volume, and show that it depends strongly on the surface texture. We then vary the volume of the droplet keeping fixed the geometric surface parameters to mimic evaporation and show that the drop experiences a transition from the CB to the W state when its volume reduces, as observed in experiments. To investigate the dependency of the wetting state on the initial state of the droplet, we implement a cellular Potts model in three dimensions. Simulations show a very good agreement with theory when the initial state is W, but it disagrees when the droplet is initialized in a CB state, in accordance with previous observations which show that the CB state is metastable in many cases. Both simulations and theoretical model can be modified to study other types of surface.
We study the percolation properties for a system of functionalized colloids on patterned substrates via Monte Carlo simulations. The colloidal particles are modeled as hard disks with three equally-distributed attractive patches on their perimeter. W e describe the patterns on the substrate as circular potential wells of radius $R_p$ arranged in a regular square or hexagonal lattice. We find a nonmonotonic behavior of the percolation threshold (packing fraction) as a function of $R_p$. For attractive wells, the percolation threshold is higher than the one for clean (non-patterned) substrates if the circular wells are non-overlapping and can only be lower if the wells overlap. For repulsive wells we find the opposite behavior. In addition, at high packing fractions the formation of both structural and bond defects suppress percolation. As a result, the percolation diagram is reentrant with the non-percolated state occurring at very low and intermediate densities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا