ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximum Absorption of the Global 21 cm Spectrum in the Standard Cosmological Model

86   0   0.0 ( 0 )
 نشر من قبل Xuelei Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The absorption feature in the global spectrum is likely the first 21cm observable from the cosmic dawn, which provides valuable insights into the earliest history of structure formation. We run a set of high-resolution hydrodynamic simulations of early structure formation to assess the effect of non-linear structure formation on the maximum absorption level (i.e. assuming the spin temperature coupling is saturated) of the global 21 cm spectrum in the standard cosmological framework. We ignore the star formation and feedbacks, which also tends to reduce the absorption signal, but take into account the inevitable non-linear density fluctuations in the intergalactic medium (IGM), shock heating and Compton heating which can reduce the absorption level. We found that the combination of these reduced the maximum absorption signal by $sim 15%$ at redshift 17, as compared with the homogeneous or linearly fluctuating IGM. These effects have to be carefully accounted for when interpreting the observational results, especially when considering the necessity of introducing new physics.

قيم البحث

اقرأ أيضاً

The 21-cm absorption feature reported by the EDGES collaboration is several times stronger than that predicted by traditional astrophysical models. If genuine, a deeper absorption may lead to stronger fluctuations on the 21-cm signal on degree scales (up to 1~Kelvin in rms), allowing these fluctuations to be detectable in nearly 50~times shorter integration times compared to previous predictions. We commenced the AARTFAAC Cosmic Explorer (ACE) program, that employs the AARTFAAC wide-field imager, to measure or set limits on the power spectrum of the 21-cm fluctuations in the redshift range $z = 17.9-18.6$ ($Delta u = 72.36-75.09$~MHz) corresponding to the deep part of the EDGES absorption feature. Here, we present first results from two LST bins: 23.5-23.75h and 23.5-23.75h, each with 2~h of data, recorded in `semi drift-scan mode. We demonstrate the application of the new ACE data-processing pipeline (adapted from the LOFAR-EoR pipeline) on the AARTFAAC data. We observe that noise estimates from the channel and time-differenced Stokes~$V$ visibilities agree with each other. After 2~h of integration and subtraction of bright foregrounds, we obtain $2sigma$ upper limits on the 21-cm power spectrum of $Delta_{21}^2 < (8139~textrm{mK})^2$ and $Delta_{21}^2 < (8549~textrm{mK})^2$ at $k = 0.144~h,textrm{cMpc}^{-1}$ for the two LST bins. Incoherently averaging the noise bias-corrected power spectra for the two LST bins yields an upper limit of $Delta_{21}^2 < (7388~textrm{mK})^2$ at $k = 0.144~h,textrm{cMpc}^{-1}$. These are the deepest upper limits thus far at these redshifts.
109 - Robert Braun 2012
Galaxy disks are shown to contain a significant population of atomic clouds of 100pc linear size which are self-opaque in the 21cm transition. These objects have HI column densities as high as 10^23 and contribute to a global opacity correction facto r of 1.34+/-0.05 that applies to the integrated 21cm emission to obtain a total HI mass estimate. Opacity-corrected images of the nearest external galaxies have been used to form a robust z=0 distribution function of HI, f(N_HI,X,z=0), the probability of encountering a specific HI column density per unit comoving distance. This is contrasted with previously published determinations of f(N_HI,X) at z=1 and 3. A systematic decline of moderate column density (18<log(N_HI)<21) HI is observed that corresponds to a decline in surface area of such gas by a factor of five since z=3. The number of equivalent DLA absorbers (log(N_HI)>20.3) has also declined systematically over this redshift interval by a similar amount, while the cosmological mass density in such systems has declined by only a factor of two to its current, opacity corrected value of Omega_HI^DLA(z=0) = 5.4 +/- 0.9x10^-4. We utilize the tight, but strongly non-linear dependence of 21cm absorption opacity on column density at z=0 to transform our HI images into ones of 21cm absorption opacity. These images are used to calculate distribution and pathlength functions of integrated 21cm opacity. The incidence of deep 21cm absorption systems is predicted to show very little evolution with redshift, while that of faint absorbers should decline by a factor of five between z=3 and the present. We explicitly consider the effects of HI absorption against background sources that are extended relative to the 100pc intervening absorber size scale. Future surveys of 21cm absorption will require very high angular resolution, of about 15mas, for their unambiguous interpretation. (Abridged.)
75 - Fulvio Melia 2021
The EDGES collaboration has reported the detection of a global 21-cm signal with a plateau centered at 76 MHz (i.e., redshift 17.2), with an amplitude of 500^(+200)_(-500) mK. This anomalous measurement does not comport with standard cosmology, which can only accommodate an amplitude < 230 mK. Nevertheless, the line profiles redshift range (15 < z < 20) suggests a possible link to Pop III star formation and an implied evolution out of the `dark ages. Given this tension with the standard model, we here examine whether the observed 21-cm signal is instead consistent with the results of recent modeling based on the alternative Friedmann-Lemaitre-Robertson-Walker cosmology known as the R_h=ct universe, showing that--in this model--the CMB radiation might have been rethermalized by dust ejected into the IGM by the first-generation stars at redshift z < 16. We find that the requirements for this process to have occurred would have self-consistently established an equilibrium spin temperature T_s~3.4 K in the neutral hydrogen, via the irradiation of the IGM by deep penetrating X-rays emitted at the termination shocks of Pop III supernova remnants. Such a dust scenario has been strongly ruled out for the standard model, so the spin temperature (~3.3 K) inferred from the 21-cm absorption feature appears to be much more consistent with the R_h=ct profile than that implied by LCDM, for which adiabatic cooling would have established a spin temperature T_s(z=17.2)~6 K.
The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources, and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming halos; the efficiency, spectral energy distribution, and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range $z = 6-40$ for each of 193 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide selection of models we still find clear correlations between the key features of the global 21-cm signal and underlying astrophysical properties of the high redshift Universe, namely the Ly$alpha$ intensity, the X-ray heating rate, and the production rate of ionizing photons. These correlations can be used to directly link future measurements of the global 21-cm signal to astrophysical quantities in a mostly model-independent way. We identify additional correlations that can be used as consistency checks.
One of the last unexplored windows to the cosmos, the Dark Ages and Cosmic Dawn, can be opened using a simple low frequency radio telescope from the stable, quiet lunar farside to measure the Global 21-cm spectrum. This frontier remains an enormous g ap in our knowledge of the Universe. Standard models of physics and cosmology are untested during this critical epoch. The messenger of information about this period is the 1420 MHz (21-cm) radiation from the hyperfine transition of neutral hydrogen, Doppler-shifted to low radio astronomy frequencies by the expansion of the Universe. The Global 21-cm spectrum uniquely probes the cosmological model during the Dark Ages plus the evolving astrophysics during Cosmic Dawn, yielding constraints on the first stars, on accreting black holes, and on exotic physics such as dark matter-baryon interactions. A single low frequency radio telescope can measure the Global spectrum between ~10-110 MHz because of the ubiquity of neutral hydrogen. Precise characterizations of the telescope and its surroundings are required to detect this weak, isotropic emission of hydrogen amidst the bright foreground Galactic radiation. We describe how two antennas will permit observations over the full frequency band: a pair of orthogonal wire antennas and a 0.3-m$^3$ patch antenna. A four-channel correlation spectropolarimeter forms the core of the detector electronics. Technology challenges include advanced calibration techniques to disentangle covariances between a bright foreground and a weak 21-cm signal, using techniques similar to those for the CMB, thermal management for temperature swings of >250C, and efficient power to allow operations through a two-week lunar night. This simple telescope sets the stage for a lunar farside interferometric array to measure the Dark Ages power spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا