ترغب بنشر مسار تعليمي؟ اضغط هنا

Charting the Parameter Space of the Global 21-cm Signal

149   0   0.0 ( 0 )
 نشر من قبل Aviad Cohen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources, and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming halos; the efficiency, spectral energy distribution, and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range $z = 6-40$ for each of 193 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide selection of models we still find clear correlations between the key features of the global 21-cm signal and underlying astrophysical properties of the high redshift Universe, namely the Ly$alpha$ intensity, the X-ray heating rate, and the production rate of ionizing photons. These correlations can be used to directly link future measurements of the global 21-cm signal to astrophysical quantities in a mostly model-independent way. We identify additional correlations that can be used as consistency checks.

قيم البحث

اقرأ أيضاً

The high-redshift 21-cm signal of neutral hydrogen is expected to be observed within the next decade and will reveal epochs of cosmic evolution that have been previously inaccessible. Due to the lack of observations, many of the astrophysical process es that took place at early times are poorly constrained. In recent work we explored the astrophysical parameter space and the resulting large variety of possible global (sky-averaged) 21-cm signals. Here we extend our analysis to the fluctuations in the 21-cm signal, accounting for those introduced by density and velocity, Ly$alpha$ radiation, X-ray heating, and ionization. While the radiation sources are usually highlighted, we find that in many cases the density fluctuations play a significant role at intermediate redshifts. Using both the power spectrum and its slope, we show that properties of high-redshift sources can be extracted from the observable features of the fluctuation pattern. For instance, the peak amplitude of ionization fluctuations can be used to estimate whether heating occurred early or late and, in the early case, to also deduce the cosmic mean ionized fraction at that time. The slope of the power spectrum has a more universal redshift evolution than the power spectrum itself and can thus be used more easily as a tracer of high-redshift astrophysics. Its peaks can be used, for example, to estimate the redshift of the Ly$alpha$ coupling transition and the redshift of the heating transition (and the mean gas temperature at that time). We also show that a tight correlation is predicted between features of the power spectrum and of the global signal, potentially yielding important consistency checks.
One approach to extracting the global 21-cm signal from total-power measurements at low radio frequencies is to parametrize the different contributions to the data and then fit for these parameters. We examine parametrizations of the 21-cm signal its elf, and propose one based on modelling the Lyman-alpha background, IGM temperature and hydrogen ionized fraction using tanh functions. This captures the shape of the signal from a physical modelling code better than an earlier parametrization based on interpolating between maxima and minima of the signal, and imposes a greater level of physical plausibility. This allows less biased constraints on the turning points of the signal, even though these are not explicitly fit for. Biases can also be alleviated by discarding information which is less robustly described by the parametrization, for example by ignoring detailed shape information coming from the covariances between turning points or from the high-frequency parts of the signal, or by marginalizing over the high-frequency parts of the signal by fitting a more complex foreground model. The fits are sufficiently accurate to be usable for experiments gathering 1000 h of data, though in this case it may be important to choose observing windows which do not include the brightest areas of the foregrounds. Our assumption of pointed, single-antenna observations and very broad-band fitting makes these results particularly applicable to experiments such as the Dark Ages Radio Explorer, which would study the global 21-cm signal from the clean environment of a low lunar orbit, taking data from the far side.
The 21-cm signal of neutral hydrogen is a sensitive probe of the Epoch of Reionization (EoR) and Cosmic Dawn. Currently operating radio telescopes have ushered in a data-driven era of 21-cm cosmology, providing the first constraints on the astrophysi cal properties of sources that drive this signal. However, extracting astrophysical information from the data is highly non-trivial and requires the rapid generation of theoretical templates over a wide range of astrophysical parameters. To this end emulators are often employed, with previous efforts focused on predicting the power spectrum. In this work we introduce 21cmGEM - the first emulator of the global 21-cm signal from Cosmic Dawn and the EoR. The smoothness of the output signal is guaranteed by design. We train neural networks to predict the cosmological signal using a database of ~30,000 simulated signals which were created by varying seven astrophysical parameters: the star formation efficiency and the minimal mass of star-forming halos; the efficiency of the first X-ray sources and their spectrum parameterized by spectral index and the low energy cutoff; the mean free path of ionizing photons and the CMB optical depth. We test the performance with a set of ~2,000 simulated signals, showing that the relative error in the prediction has an r.m.s. of 0.0159. The algorithm is efficient, with a running time per parameter set of 0.16 sec. Finally, we use the database of models to check the robustness of relations between the features of the global signal and the astrophysical parameters that we previously reported.
The 21-cm signal from the Cosmic Dawn (CD) is likely to contain large fluctuations, with the most extreme astrophysical models on the verge of being ruled out by observations from radio interferometers. It is therefore vital that we understand not on ly the astrophysical processes governing this signal, but also other inherent processes impacting the signal itself, and in particular line-of-sight effects. Using our suite of fully numerical radiative transfer simulations, we investigate the impact on the redshifted 21-cm from the CD from one of these processes, namely the redshift-space distortions (RSDs). When RSDs are added, the resulting boost to the power spectra makes the signal more detectable for our models at all redshifts, further strengthening hopes that a power spectra measurement of the CD will be possible. RSDs lead to anisotropy in the signal at the beginning and end of the CD, but not while X-ray heating is underway. The inclusion of RSDs, however, decreases detectability of the non-Gaussianity of fluctuations from inhomogeneous X-ray heating measured by the skewness and kurtosis. On the other hand, mock observations created from all our simulations that include telescope noise corresponding to 1000 h observation with the Square Kilometre Array telescope show that we may be able image the CD for all heating models considered and suggest RSDs dramatically boost fluctuations coming from the inhomogeneous Ly-$alpha$ background.
70 - Anv{z}e Slosar 2016
The motion of the solar system with respect to the cosmic rest frame modulates the monopole of the Epoch of Reionization 21-cm signal into a dipole. This dipole has a characteristic frequency dependence that is dominated by the frequency derivative o f the monopole signal. We argue that although the signal is weaker by a factor of $sim100$, there are significant benefits in measuring the dipole. Most importantly, the direction of the cosmic velocity vector is known exquisitely well from the cosmic microwave background and is not aligned with the galaxy velocity vector that modulates the foreground monopole. Moreover, an experiment designed to measure a dipole can rely on differencing patches of the sky rather than making an absolute signal measurement, which helps with some systematic effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا