ترغب بنشر مسار تعليمي؟ اضغط هنا

s-d coupling enhanced phonon anharmonicity in copper-based compounds

331   0   0.0 ( 0 )
 نشر من قبل Kaike Yang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Materials with ultralow thermal conductivity are of great interest for efficient energy conversion and thermal barrier coating. Copper-based semiconductors such as copper chalcogenides and copper halides are known to possess extreme low thermal conductivity, whereas the fundamental origin of the low thermal conductivity observed in the copper-based materials remains elusive. Here, we reveal that s-d coupling induced giant phonon anharmonicity is the fundamental mechanism responsible for the ultralow thermal conductivity of copper compounds. The symmetry controlled strong coupling of high-lying occupied copper 3d orbital with the unoccupied 4s state under thermal vibration remarkably lowers the lattice potential barrier, which enhances anharmonic scattering between phonons. This understanding is confirmed by temperature-dependent Raman spectra measurements. Our study offers an insight at atomic level connecting electronic structures with phonon vibration modes, and thus sheds light on materials properties that rely on electron-phonon coupling, such as thermoelectricity and superconductivity.


قيم البحث

اقرأ أيضاً

We examine anharmonic contributions to the optical phonon modes in bulk $T_d$-MoTe$_2$ through temperature-dependent Raman spectroscopy. At temperatures ranging from 100 K to 200 K, we find that all modes redshift linearly with temperature in agreeme nt with the Gr{u}neisen model. However, below 100 K we observe nonlinear temperature-dependent frequency shifts in some modes. We demonstrate that this anharmonic behavior is consistent with the decay of an optical phonon into multiple acoustic phonons. Furthermore, the highest frequency Raman modes show large changes in intensity and linewidth near $Tapprox 250$ K that correlate well with the $T_d to 1T^prime$ structural phase transition. These results suggest that phonon-phonon interactions can dominate anharmonic contributions at low temperatures in bulk $T_d$-MoTe$_2$, an experimental regime that is currently receiving attention in efforts to understand Weyl semimetals.
We present the results of inelastic x-ray scattering for magnetite and analyze the energies and spectral widths of the phonon modes with different symmetries in a broad range of temperature 125<T<293 K. The phonon modes with X_4 and Delta_5 symmetrie s broaden in a nonlinear way with decreasing temperature when the Verwey transition is approached. It is found that the maxima of phonon widths occur away from high-symmetry points which indicates the incommensurate character of critical fluctuations. Strong phonon anharmonicity induced by electron-phonon coupling is discovered within ab initio calculations which take into account local Coulomb interactions at Fe ions. It (i) explains observed anomalous phonon broadening, and (ii) demonstrates that the Verwey transition is a cooperative phenomenon which involves a wide spectrum of phonons coupled to charge fluctuations condensing in the low-symmetry phase.
Electron-phonon coupling directly determines the stability of cooperative order in solids, including superconductivity, charge and spin density waves. Therefore, the ability to enhance or reduce electron-phonon coupling by optical driving may open up new possibilities to steer materials functionalities, potentially at high speeds. Here we explore the response of bilayer graphene to dynamical modulation of the lattice, achieved by driving optically-active in-plane bond stretching vibrations with femtosecond mid-infrared pulses. The driven state is studied by two different ultrafast spectroscopic techniques. Firstly, TeraHertz time-domain spectroscopy reveals that the Drude scattering rate decreases upon driving. Secondly, the relaxation rate of hot quasi-particles, as measured by time- and angle-resolved photoemission spectroscopy, increases. These two independent observations are quantitatively consistent with one another and can be explained by a transient three-fold enhancement of the electron-phonon coupling constant. The findings reported here provide useful perspective for related experiments, which reported the enhancement of superconductivity in alkali-doped fullerites when a similar phonon mode was driven.
While 3$d$-containing materials display strong electron correlations, narrow band widths, and robust magnetism, 5$d$ systems are recognized for strong spin-orbit coupling, increased hybridization, and more diffuse orbitals. Combining these properties leads to novel behavior. Sr$_3$NiIrO$_6$, for example, displays complex magnetism and ultra-high coercive fields - up to an incredible 55~T. Here, we combine infrared and optical spectroscopies with high-field magnetization and first principles calculations to explore the fundamental excitations of the lattice and related coupling processes including spin-lattice and electron-phonon mechanisms. Magneto-infrared spectroscopy reveals spin-lattice coupling of three phonons that modulate the Ir environment to reduce the energy required to modify the spin arrangement. While these modes primarily affect exchange within the chains, analysis also uncovers important inter-chain motion. This provides a mechanism by which inter-chain interactions can occur in the developing model for ultra-high coercivity. At the same time, analysis of the on-site Ir$^{4+}$ excitations reveals vibronic coupling and extremely large crystal field parameters that lead to a t$_{2g}$-derived low-spin state for Ir. These findings highlight the spin-charge-lattice entanglement in Sr$_3$NiIrO$_6$ and suggest that similar interactions may take place in other 3$d$/5$d$ hybrids.
We report a detailed study of specific heat, electrical resistivity and thermal expansion in combination with inelastic neutron and inelastic X-ray scattering to investigate the origin of superconductivity in the two silicon clathrate superconductors Ba8Si46 and Ba24Si100. Both compounds have a similar structure based on encaged barium atoms in oversized silicon cages. However, the transition temperatures are rather different: 8 K and 1.5 K respectively. By extracting the superconducting properties, phonon density of states, electron-phonon coupling function and phonon anharmonicity from these measurements we discuss the important factors governing Tc and explain the difference between the two compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا