ﻻ يوجد ملخص باللغة العربية
We examine anharmonic contributions to the optical phonon modes in bulk $T_d$-MoTe$_2$ through temperature-dependent Raman spectroscopy. At temperatures ranging from 100 K to 200 K, we find that all modes redshift linearly with temperature in agreement with the Gr{u}neisen model. However, below 100 K we observe nonlinear temperature-dependent frequency shifts in some modes. We demonstrate that this anharmonic behavior is consistent with the decay of an optical phonon into multiple acoustic phonons. Furthermore, the highest frequency Raman modes show large changes in intensity and linewidth near $Tapprox 250$ K that correlate well with the $T_d to 1T^prime$ structural phase transition. These results suggest that phonon-phonon interactions can dominate anharmonic contributions at low temperatures in bulk $T_d$-MoTe$_2$, an experimental regime that is currently receiving attention in efforts to understand Weyl semimetals.
Crystalline two-dimensional (2D) superconductors with low carrier density are an exciting new class of materials in which superconductivity coexists with strong interactions, the effects of complex topology are not obscured by disorder, and electroni
In many realistic topological materials, more than one kind of fermions contribute to the electronic bands crossing the Fermi level, leading to various novel phenomena. Here, using momentum-resolved inelastic electron scattering, we investigate the p
We have utilized time-domain magneto-terahertz spectroscopy to investigate the low frequency optical response of topological insulator Cu$_{0.02}$Bi$_2$Se$_3$ and Bi$_2$Se$_3$ films. With both field and frequency dependence, such experiments give suf
Whereas electron-phonon scattering typically relaxes the electrons momentum in metals, a perpetual exchange of momentum between phonons and electrons conserves total momentum and can lead to a coupled electron-phonon liquid with unique transport prop
Weyl semimetals display a novel topological phase of matter where the Weyl nodes emerge in pairs of opposite chirality and can be seen as either a source or a sink of Berry curvature. The exotic effects in Weyl semimetals, such as surface Fermi arcs