ﻻ يوجد ملخص باللغة العربية
Using the dynamical diquark model, we calculate the electric-dipole radiative decay widths to $X(3872)$ of the lightest negative-parity exotic candidates, including the four $I=0$, $J^{PC} ! = ! 1^{--}$ ($Y$) states. The $O$(100--1000 keV) values obtained test the hypothesis of a common substructure shared by all of these states. We also calculate the magnetic-dipole radiative decay width for $Z_c(4020)^0 ! to ! gamma X(3872)$, and find it to be rather smaller ($<$~10 keV) than its predicted value in molecular models.
The observation by BESIII and LHCb of states with hidden charm and open strangeness ($cbar c qbar s$) presents new opportunities for the development of a global model of heavy-quark exotics. Here we extend the dynamical diquark model to encompass suc
The lightest hidden-bottom tetraquarks in the dynamical diquark model fill an $S$-wave multiplet consisting of 12 isomultiplets. We predict their masses and dominant bottomonium decay channels using a simple 3-parameter Hamiltonian that captures the
We produce the first numerical predictions of the dynamical diquark model of multiquark exotic hadrons. Using Born-Oppenheimer potentials calculated numerically on the lattice, we solve coupled and uncoupled systems of Schroedinger equations to obtai
We incorporate fine-structure corrections into the dynamical diquark model of multiquark exotic hadrons. These improvements include effects due to finite diquark size, spin-spin couplings within the diquarks, and most significantly, isospin-dependent
We develop the spectroscopy of $cbar c cbar c$ and other all-heavy tetraquark states in the dynamical diquark model. In the most minimal form of the model (e.g., each diquark appears only in the color-triplet combination; the non-orbital spin couplin