ﻻ يوجد ملخص باللغة العربية
The observation by BESIII and LHCb of states with hidden charm and open strangeness ($cbar c qbar s$) presents new opportunities for the development of a global model of heavy-quark exotics. Here we extend the dynamical diquark model to encompass such states, using the same values of Hamiltonian parameters previously obtained from the nonstrange and hidden-strange sectors. The large mass splitting between $Z_{cs}(4000)$ and $Z_{cs}(4220)$ suggests substantial SU(3)$_{rm flavor}$ mixing between all $J^P ! = ! 1^+$ states, while their average mass compared to that of other sectors offers a direct probe of flavor octet-singlet mixing among exotics. We also explore the inclusion of $eta$-like exchanges within the states, and find their effects to be quite limited. In addition, using the same diquark-mass parameters, we find $P_c(4312)$ and $P_{cs}(4459)$ to fit well as corresponding nonstrange and open-strange pentaquarks.
The lightest hidden-bottom tetraquarks in the dynamical diquark model fill an $S$-wave multiplet consisting of 12 isomultiplets. We predict their masses and dominant bottomonium decay channels using a simple 3-parameter Hamiltonian that captures the
We study the fine structure in the spectrum of known and predicted negative-parity hidden-charm exotic meson states, which comprise the lowest $P$-wave multiplet in the dynamical diquark model. Starting with a form previously shown to successfully de
Using the dynamical diquark model, we calculate the electric-dipole radiative decay widths to $X(3872)$ of the lightest negative-parity exotic candidates, including the four $I=0$, $J^{PC} ! = ! 1^{--}$ ($Y$) states. The $O$(100--1000 keV) values obt
The purpose of the present study is to explore the mass spectrum of the hidden charm tetraquark states within a diquark model. Proposing that a tetraquark state is composed of a diquark and an antidiquark, the masses of all possible $[qc][bar{q}bar{c
The mass spectrum of hidden charm pentaquark states composed of two diquarks and an antiquark are calculated by use of an effective Hamiltonian which includes explicitly the spin, color, and flavor dependent interactions. The results show that the $P