ﻻ يوجد ملخص باللغة العربية
The electronic properties of $pi$-conjugated two-dimensional (2D) polymers near the Fermi level are determined by structural topology and chemical composition. Thus, tight-binding (TB) calculations of the corresponding fundamental network can be used to explore the parameter space to find configurations with intriguing properties before designing the the atomistic 2D polymer network. The vertex-transitive textbf{fes} lattice, which is also called square-octagon lattice, is rich in interesting topological features including Dirac points and flat bands. Herein, we study its electronic and topological properties within the TB framework using representative parameters for chemical systems. Secondly, we demonstrate that the rational implementation of band structure features obtained from TB calculations into 2D polymers is feasible with a family of 2D polymers possessing textbf{fes} structure. A one-to-one band structure correspondence between fundamental network and 2D polymers is found. Moreover, changing the relative length of linkers connecting the triangulene units in the 2D polymers reflect tuning of hopping parameters in the TB model. These perturbations allow to open sizeable local band gaps at various positions in the Brillouin zone. From analysis of Berry curvature flux, none of the polymers exhibits a large topologically non-trivial band gap. However, we find a particular configuration of semimetallic characteristics with separate electron and hole pockets, which possess very low effective masses both for electrons (as small as $m^*_mathrm{e} = 0.05$) and holes (as small as $m^*_mathrm{h} = 0.01$).
We have predicted a new phase of nitrogen with octagon structure in our previous study, which we referred to as octa-nitrogene (ON). In this work, we make further investigation on its electronic structure. The phonon band structure has no imaginary p
Using evolutionary algorithm for crystal structure prediction, we present a new stable two-dimensional (2D) carbon allotrope composed of polymerized as-indacenes (PAI) in a zigzag pattern, namely PAI-graphene whose energy is lower than most of the re
The discovery of two-dimensional electron gas (2DEG) at well-defined interfaces between insulating complex oxides provides the opportunity for a new generation of all-oxide electronics. Particularly, the 2DEG at the interface between two perovskite i
The new-found two-dimensional antiferromagnetic GdTe$_3$ is attractive owing to its highest carrier mobility among all known layered magnetic materials, as well as its potential application for novel magnetic twistronic and spintronic devices. Here,
We have studied the spin dynamics of a high-mobility two-dimensional electron system in a GaAs/Al_{0.3}Ga_{0.7}As single quantum well by time-resolved Faraday rotation and time-resolved Kerr rotation in dependence on the initial degree of spin polari