ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding and controlling hexagonal patterns of wrinkles in neo-Hookean elastic bilayer structures

94   0   0.0 ( 0 )
 نشر من قبل Teng Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Teng Zhang




اسأل ChatGPT حول البحث

A controlled surface wrinkling pattern has been widely used in diverse applications, such as stretchable electronics, smart windows, and haptics. Here, we focus on hexagonal wrinkling patterns because of their great potentials in realizing anisotropic and tunable friction and serving as a dynamical template for making non-flat thin films through self-assembling processes. We employ large-scale finite element simulations of a bilayer neo-Hookean solid (e.g., a film bonded on a substrate) to explore mechanical principles that govern the formation of hexagonal wrinkling patterns and strategies for making nearly perfect hexagonal patterns. In our model, the wrinkling instabilities are driven by the confined film expansion. Our results indicate robust hexagonal patterns exist at a relatively small modulus mismatch (on the order of 10) between the film and substrate. Besides, the film expansion should not exceed the onset of wrinkling value too much to avoid post-buckling patterns. By harnessing the imperfection insensitivity of one-dimension sinusoidal wrinkles, we apply a sequential loading to the bilayer structure to produce the nearly perfect hexagonal patterns. Lastly, we discuss the connection between the simple bilayer model and the gradient structures commonly existed in experiments.

قيم البحث

اقرأ أيضاً

96 - Haim Diamant 2021
Thin elastic sheets supported on compliant media form wrinkles under lateral compression. Since the lateral pressure is coupled to the sheets deformation, varying it periodically in time creates a parametric excitation. We study the resulting paramet ric resonance of wrinkling modes in sheets supported on semi-infinite elastic or viscoelastic media, at pressures smaller than the critical pressure of static wrinkling. We find distinctive behaviors as a function of excitation amplitude and frequency, including (a) a different dependence of the dynamic wrinkle wavelength on sheet thickness compared to the static wavelength; and (b) a discontinuous decrease of the wrinkle wavelength upon increasing excitation frequency at sufficiently large pressures. In the case of a viscoelastic substrate, resonant wrinkling requires crossing a threshold of excitation amplitude. The frequencies for observing these phenomena in relevant experimental systems are of the order of a kilohertz and above. We discuss experimental implications of the results.
We investigate with experiments the twist induced transverse buckling instabilities of an elastic sheet of length $L$, width $W$, and thickness $t$, that is clamped at two opposite ends while held under a tension $T$. Above a critical tension $T_lamb da$ and critical twist angle $eta_{tr}$, we find that the sheet buckles with a mode number $n geq 1$ transverse to the axis of twist. Three distinct buckling regimes characterized as clamp-dominated, bendable, and stiff are identified, by introducing a bendability length $L_B$ and a clamp length $L_{C}(<L_B)$. In the stiff regime ($L>L_B$), we find that mode $n=1$ develops above $eta_{tr} equiv eta_S sim (t/W) T^{-1/2}$, independent of $L$. In the bendable regime $L_{C}<L<L_B$, $n=1$ as well as $n > 1$ occur above $eta_{tr} equiv eta_B sim sqrt{t/L}T^{-1/4}$. Here, we find the wavelength $lambda_B sim sqrt{Lt}T^{-1/4}$, when $n > 1$. These scalings agree with those derived from a covariant form of the Foppl-von Karman equations, however, we find that the $n=1$ mode also occurs over a surprisingly large range of $L$ in the bendable regime. Finally, in the clamp-dominated regime ($L < L_c$), we find that $eta_{tr}$ is higher compared to $eta_B$ due to additional stiffening induced by the clamped boundary conditions.
The mechanical response and load bearing capacity of high performance polymer composites changes due to diffusion of a fluid, temperature, oxidation or the extent of the deformation. Hence, there is a need to study the response of bodies under such d egradation mechanisms. In this paper, we study the effect of degradation and healing due to the diffusion of a fluid on the response of a solid which prior to the diffusion can be described by the generalized neo-Hookean model. We show that a generalized neo-Hookean solid - which behaves like an elastic body (i.e., it does not produce entropy) within a purely mechanical context - creeps and stress relaxes when infused with a fluid and behaves like a body whose material properties are time dependent. We specifically investigate the torsion of a generalized neo-Hookean circular cylindrical annulus infused with a fluid. The equations of equilibrium for a generalized neo-Hookean solid are solved together with the convection-diffusion equation for the fluid concentration. Different boundary conditions for the fluid concentration are also considered. We also solve the problem for the case when the diffusivity of the fluid depends on the deformation of the generalized neo-Hookean solid.
In this article, we report the electronic band structures of hexagonal bilayer systems, specifically, rotated graphene-graphene and boron nitride-boron nitride bilayers, by introducing an angle between the layers and forming new periodic structures, known as moire patterns. Using a semi-empirical tight-binding approach with a parametrized hopping parameter between the layers, using one orbital per-site approximation, and taking into account nearest-neighbor interactions only, we found he electronic dispersion relations to be around K points in a low energy approximation. Our results show that graphene bilayers exhibit zero band gap for all angles tested in this work. In boron nitride bilayers, the results reveal a tunable bandgap that satisfies the prediction of the bandgap found in one-dimensional diatomic systems presented in the literature.
Color centers in 2-dimensional hexagonal boron nitride (h-BN) have recently emerged as stable and bright single-photon emitters (SPEs) operating at room temperature. In this study, we combine theory and experiment to show that vacancy-based SPEs sele ctively form at nano-scale wrinkles in h-BN with its optical dipole preferentially aligned to the wrinkle direction. By using density functional theory calculations, we find that the wrinkle curvature plays a crucial role in localizing vacancy-based SPE candidates and aligning the defects symmetry plane to the wrinkle direction. By performing optical measurements on SPEs created in h-BN single-crystal flakes, we experimentally confirm the wrinkle-induced generation of SPEs and their polarization alignment to the wrinkle direction. Our results not only provide a new route to controlling the atomic position and the optical property of the SPEs but also revealed the possible crystallographic origin of the SPEs in h-BN, greatly enhancing their potential for use in solid-state quantum photonics and quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا