ﻻ يوجد ملخص باللغة العربية
We investigate with experiments the twist induced transverse buckling instabilities of an elastic sheet of length $L$, width $W$, and thickness $t$, that is clamped at two opposite ends while held under a tension $T$. Above a critical tension $T_lambda$ and critical twist angle $eta_{tr}$, we find that the sheet buckles with a mode number $n geq 1$ transverse to the axis of twist. Three distinct buckling regimes characterized as clamp-dominated, bendable, and stiff are identified, by introducing a bendability length $L_B$ and a clamp length $L_{C}(<L_B)$. In the stiff regime ($L>L_B$), we find that mode $n=1$ develops above $eta_{tr} equiv eta_S sim (t/W) T^{-1/2}$, independent of $L$. In the bendable regime $L_{C}<L<L_B$, $n=1$ as well as $n > 1$ occur above $eta_{tr} equiv eta_B sim sqrt{t/L}T^{-1/4}$. Here, we find the wavelength $lambda_B sim sqrt{Lt}T^{-1/4}$, when $n > 1$. These scalings agree with those derived from a covariant form of the Foppl-von Karman equations, however, we find that the $n=1$ mode also occurs over a surprisingly large range of $L$ in the bendable regime. Finally, in the clamp-dominated regime ($L < L_c$), we find that $eta_{tr}$ is higher compared to $eta_B$ due to additional stiffening induced by the clamped boundary conditions.
Thin elastic sheets supported on compliant media form wrinkles under lateral compression. Since the lateral pressure is coupled to the sheets deformation, varying it periodically in time creates a parametric excitation. We study the resulting paramet
We demonstrate with experiments that wrinkling in stretched latex sheets occur over finite strains, and that their amplitudes grow and then decay to zero over a greater range of applied strains compared with linear elastic materials. The wrinkles occ
We consider three-dimensional reshaping of thin nemato-elastic sheets containing half-charged defects upon nematic-isotropic transition. Gaussian curvature, that can be evaluated analytically when the nematic texture is known, differs from zero in th
A controlled surface wrinkling pattern has been widely used in diverse applications, such as stretchable electronics, smart windows, and haptics. Here, we focus on hexagonal wrinkling patterns because of their great potentials in realizing anisotropi
The buckling and twisting of slender, elastic fibers is a deep and well-studied field. A slender elastic rod that is twisted with respect to a fixed end will spontaneously form a loop, or hockle, to relieve the torsional stress that builds. Further t