ﻻ يوجد ملخص باللغة العربية
Scalar-tensor theories are well studied extensions of general relativity that offer deviations which are yet within observational boundaries. We present the time evolution equations governing the perturbations of a nonrotating scalarized neutron star, including a dynamic spacetime as well as scalar field within the framework of such scalar-tensor theories. We employ a theory that allows for a massive scalar field or a self-interaction term and we study the impact of those parameters on the non-axisymmetric $f$-mode. The time evolution approach allows for a comparatively simple implementation of the boundary conditions. We find that the $f$-mode frequency is no longer a simple function of the stars average density when a scalar field is present. We also evaluate the accuracy of different variants of the Cowling approximation commonly used in previous studies of neutron star oscillation modes in alternative theories of gravity and demonstrate that it can give us not only qualitatively correct results, but in some cases also good quantitative estimates of the oscillations frequencies.
It was recently shown, that in a class of tensor-multi-scalar theories of gravity with a nontrivial target space metric, there exist scalarized neutron star solutions. An important property of these compact objects is that the scalar charge is zero a
In a certain class of scalar-Gauss-Bonnet gravity, the black holes and the neutron stars can undergo spontaneous scalarization - a strong gravity phase transition triggered by a tachyonic instability due to the non-minimal coupling between the scalar
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curv
We construct scalarized wormholes with a NUT charge in higher curvature theories. We consider both Einstein-scalar-Gauss-Bonnet and Einstein-scalar-Chern-Simons theories, following a recent paper by Brihaye et al. [1], where spontaneously scalarised
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hai