ﻻ يوجد ملخص باللغة العربية
It was recently shown, that in a class of tensor-multi-scalar theories of gravity with a nontrivial target space metric, there exist scalarized neutron star solutions. An important property of these compact objects is that the scalar charge is zero and therefore, the binary pulsar experiments can not impose constraints based on the absence of scalar dipole radiation. Moreover, the structure of the solutions is very complicated. For a fixed central energy density up to three neutron star solutions can exist -- one general relativistic and two scalarized, that is quite different from the scalarization in other alternative theories of gravity. In the present paper we address the stability of these solutions using two independent approaches -- solving the linearized radial perturbation equations and performing nonlinear simulations in spherical symmetry. The results show that the change of stability occurs at the maximum mass models and all solutions before that point are stable. This leads to the interesting consequence that there exists a stable part of the scalarized branch close to the bifurcation point where the mass of the star increases with the decrease of the central energy density.
In a certain class of scalar-Gauss-Bonnet gravity, the black holes and the neutron stars can undergo spontaneous scalarization - a strong gravity phase transition triggered by a tachyonic instability due to the non-minimal coupling between the scalar
Scalar-tensor theories are well studied extensions of general relativity that offer deviations which are yet within observational boundaries. We present the time evolution equations governing the perturbations of a nonrotating scalarized neutron star
In the present paper we show the existence of a fully nonlinear dynamical mechanism for the formation of scalarized black holes which is different from the spontaneous scalarization. We consider a class of scalar-Gauss-Bonnet gravity theories within
We compute the internal modes of a non-spinning neutron star and its tidal metric perturbation in general relativity, and determine the effect of relativistic corrections to the modes on mode coupling and the criterion for instability. Claims have be
In this work we analyze hydrostatic equilibrium configurations of neutron stars in a non-minimal geometry-matter coupling (GMC) theory of gravity. We begin with the derivation of the hydrostatic equilibrium equations for the $f(R,L) $ gravity theory,