ترغب بنشر مسار تعليمي؟ اضغط هنا

Syntactic completeness of proper display calculi

75   0   0.0 ( 0 )
 نشر من قبل Giuseppe Greco
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent strand of research in structural proof theory aims at exploring the notion of analytic calculi (i.e. those calculi that support general and modular proof-strategies for cut elimination), and at identifying classes of logics that can be captured in terms of these calculi. In this context, Wansing introduced the notion of proper display calculi as one possible design framework for proof calculi in which the analiticity desiderata are realized in a particularly transparent way. Recently, the theory of properly displayable logics (i.e. those logics that can be equivalently presented with some proper display calculus) has been developed in connection with generalized Sahlqvist theory (aka unified correspondence). Specifically, properly displayable logics have been syntactically characterized as those axiomatized by analytic inductive axioms, which can be equivalently and algorithmically transformed into analytic structural rules so that the resulting proper display calculi enjoy a set of basic properties: soundness, completeness, conservativity, cut elimination and subformula property. In this context, the proof that the given calculus is complete w.r.t. the original logic is usually carried out syntactically, i.e. by showing that a (cut free) derivation exists of each given axiom of the logic in the basic system to which the analytic structural rules algorithmically generated from the given axiom have been added. However, so far this proof strategy for syntactic completeness has been implemented on a case-by-case base, and not in general. In this paper, we address this gap by proving syntactic completeness for properly displayable logics in any normal (distributive) lattice expansion signature. Specifically, we show that for every analytic inductive axiom a cut free derivation can be effectively generated which has a specific shape, referred to as pre-normal form.



قيم البحث

اقرأ أيضاً

181 - Christine Tasson 2009
Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans ${mathcal{B}}$ and a conditional operator, which can be interpreted in this model. We prove completeness at type ${mathcal{B}}^nto{mathcal{B}}$ for every n by an algebraic method.
201 - Luigi Santocanale 2008
This paper exhibits a general and uniform method to prove completeness for certain modal fixpoint logics. Given a set Gamma of modal formulas of the form gamma(x, p1, . . ., pn), where x occurs only positively in gamma, the language Lsharp (Gamma) is obtained by adding to the language of polymodal logic a connective sharp_gamma for each gamma epsilon. The term sharp_gamma (varphi1, . . ., varphin) is meant to be interpreted as the least fixed point of the functional interpretation of the term gamma(x, varphi 1, . . ., varphi n). We consider the following problem: given Gamma, construct an axiom system which is sound and complete with respect to the concrete interpretation of the language Lsharp (Gamma) on Kripke frames. We prove two results that solve this problem. First, let Ksharp (Gamma) be the logic obtained from the basic polymodal K by adding a Kozen-Park style fixpoint axiom and a least fixpoint rule, for each fixpoint connective sharp_gamma. Provided that each indexing formula gamma satisfies the syntactic criterion of being untied in x, we prove this axiom system to be complete. Second, addressing the general case, we prove the soundness and completeness of an extension K+ (Gamma) of K_sharp (Gamma). This extension is obtained via an effective procedure that, given an indexing formula gamma as input, returns a finite set of axioms and derivation rules for sharp_gamma, of size bounded by the length of gamma. Thus the axiom system K+ (Gamma) is finite whenever Gamma is finite.
A notion of probabilistic lambda-calculus usually comes with a prescribed reduction strategy, typically call-by-name or call-by-value, as the calculus is non-confluent and these strategies yield different results. This is a break with one of the main advantages of lambda-calculus: confluence, which means results are independent from the choice of strategy. We present a probabilistic lambda-calculus where the probabilistic operator is decomposed into two syntactic constructs: a generator, which represents a probabilistic event; and a consumer, which acts on the term depending on a given event. The resulting calculus, the Probabilistic Event Lambda-Calculus, is confluent, and interprets the call-by-name and call-by-value strategies through different interpretations of the probabilistic operator into our generator and consumer constructs. We present two notions of reduction, one via fine-grained local rewrite steps, and one by generation and consumption of probabilistic events. Simple types for the calculus are essentially standard, and they convey strong normalization. We demonstrate how we can encode call-by-name and call-by-value probabilistic evaluation.
119 - Christoph Wagner 2014
Formal reasoning about distributed algorithms (like Consensus) typically requires to analyze global states in a traditional state-based style. This is in contrast to the traditional action-based reasoning of process calculi. Nevertheless, we use doma in-specific variants of the latter, as they are convenient modeling languages in which the local code of processes can be programmed explicitly, with the local state information usually managed via parameter lists of process constants. However, domain-specific process calculi are often equipped with (unlabeled) reduction semantics, building upon a rich and convenient notion of structural congruence. Unfortunately, the price for this convenience is that the analysis is cumbersome: the set of reachable states is modulo structural congruence, and the processes state information is very hard to identify. We extract from congruence classes of reachable states individual state-informative representatives that we supply with a proper formal semantics. As a result, we can now freely switch between the process calculus terms and their representatives, and we can use the stateful representatives to perform assertional reasoning on process calculus models.
106 - Kirstin Peters 2019
Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with encodability criteria. There exists a bunch of differen t criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover, it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. This paper provides a short survey on often used encodability criteria, general frameworks that try to provide a unified notion of the quality of an encoding, and methods to analyse and compare encodability criteria.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا