ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge-Based Three-Dimensional Dose Prediction for Tandem-And-Ovoid Brachytherapy

95   0   0.0 ( 0 )
 نشر من قبل Katherina Cortes
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose: To develop a knowledge-based voxel-wise dose prediction system using a convolution neural network for high-dose-rate brachytherapy cervical cancer treatments with a tandem-and-ovoid (T&O) applicator. Methods: A 3D U-NET was utilized to output dose predictions using organ-at-risk (OAR), high-risk clinical target volume (HRCTV), and possible source locations. A sample of previous T&O treatments comprising 397 cases (273 training:62 validation:62 test), HRCTV and OARs (bladder/rectum/sigmoid) was used. Structures and dose were interpolated to 1x1x2.5mm3 dose planes with two input channels (source positions, voxel identification) and one output channel for dose. We evaluated dose difference (Delta D)(xyz)=D_(actual)(x,y,z)-D_(predicted)(x,y,z) and dice similarity coefficients in all cohorts across the clinically-relevant dose range (20-130% of prescription), mean and standard deviation. We also examined discrete DVH metrics used for T&O plan quality assessment: HRCTV D_90%(dose to hottest 90% volume) and OAR D_2cc, with Delta D_x=D_(x,actual)-D_(x,predicted). Pearson correlation coefficient, standard deviation, and mean quantified model performance on the clinical metrics. Results: Voxel-wise dose difference accuracy for 20-130% dose range for training(test) ranges for mean (Delta D) and standard deviation for all voxels was [-0.3%+/-2.0% to +1.0%+/-12.0%] ([-0.1%+/-4% to +4.0%+/-26%]). Voxel-wise dice similarity coefficients for 20-130% dose ranged from [0.96, 0.91]([0.94, 0.87]). DVH metric prediction in the training (test) set were HRCTV(Delta D_90)=-0.19+/-0.55 Gy (-0.09+/-0.67 Gy), bladder(Delta D_2cc)=-0.06+/-0.54 Gy (-0.17+/-0.67 Gy), rectum(Delta D)_2cc=-0.03+/-0.36 Gy (-0.04+/-0.46 Gy), and sigmoid(Delta D_2cc)=-0.01+/-0.34 Gy (0.00+/-0.44 Gy). Conclusion: 3D knowledge-based dose predictions for T&O brachytherapy provide accurate voxel-level and DVH metric estimates.



قيم البحث

اقرأ أيضاً

132 - Huan Liu , Chang M Ma , Xun Jia 2021
High dose-rate brachytherapy (HDRBT) is widely used for gynecological cancer treatment. Although commercial treatment planning systems (TPSs) have inverse optimization modules, it takes several iterations to adjust planning objectives to achieve a sa tisfactory plan. Interactive plan-modification modules enable modifying the plan and visualizing results in real time, but they update plans based on simple geometrical or heuristic algorithms, which cannot ensure resulting plan optimality. This project develops an interactive plan optimization module for HDRBT of gynecological cancer. By efficiently solving an optimization problem in real time, it allows a user to visualize a plan and interactively modify it to improve quality. We formulated an optimization problem with an objective function containing a weighted sum of doses to normal organs subject to user-specified target coverage. A user interface was developed that allows a user to adjust organ weights using scroll bars. With a simple mouse click, the optimization problem is solved in seconds with a highly efficient alternating-direction method of multipliers and a warm start optimization strategy. Resulting clinically relevant D2cc of organs are displayed immediately. This allows a user to intuitively adjust plans with satisfactory quality. We tested the effectiveness of our development in cervix cancer cases treated with a tandem-and-ovoid applicator. It took a maximum of 3 seconds to solve the optimization problem in each instance. With interactive optimization capability, a satisfactory plan can be obtained in <1 min. In our clinic, although the time for plan adjustment was typically <10min with simple interactive plan modification tools in TPS, the resulting plans do not ensure optimality. Our plans achieved on average 5% lower D2cc than clinical plans, while maintaining target coverage.
Purpose: This study aims to optimize and characterize the response of a mPSD for in vivo dosimetry in HDR brachytherapy. Methods: An exhaustive analysis was carried out in order to obtain an optimized mPSD design that maximize the scintillation light collection produced by the interaction of ionizing photons. Several mPSD prototypes were built and tested in order to determine the appropriate order of scintillators relative to the photodetector, as well as their length as a function of the scintillation light emitted. Scintillators BCF-60, BCF-12 and BCF-10 constituted the mPSD sensitive volume.Each scintillator contribution to the total spectrum was determined by irradiations in the low energy range.For the best mPSD design, a numerical optimization was done in order to select the optical components that better match the light emission profile. The optimized dosimetric system was used for HDR brachytherapy dose determination. The system performance was quantified in term of signal to noise ratio and signal to background ratio. Results: It was determined that BCF-60 should be placed at the distal position, BCF-12 in the center and BCF-10 at proximal position with respect to the photodetector.This configuration allowed for optimized light transmission through the collecting fiber, avoiding inter-scintillator excitation and self-absorption effects.The optimized luminescence system allowed for signal deconvolution using a multispectral approach, extracting the dose to each element while taking into account Cerenkov stem effect.Differences between the mPSD measurements and TG-43 remain below 5%. In all measurement conditions, the system was able to properly differentiate the produced scintillation signal from the background one. Conclusions: A mPSD was constructed and optimized for HDR brachytherapy dosimetry, enabling real time dose determination, up to 6.5cm from the 192Ir source.
Stereotactic body radiation therapy (SBRT) for pancreatic cancer requires a skillful approach to deliver ablative doses to the tumor while limiting dose to the highly sensitive duodenum, stomach, and small bowel. Here, we develop knowledge-based arti ficial neural network dose models (ANN-DMs) to predict dose distributions that would be approved by experienced physicians. Using dose distributions calculated by a commercial treatment planning system (TPS), physician-approved treatment plans were used to train ANN-DMs that could predict physician-approved dose distributions based on a set of geometric parameters (vary from voxel to voxel) and plan parameters (constant across all voxels for a given patient). Differences between TPS and ANN-DM dose distributions were used to evaluate model performance. ANN-DM design, including neural network structure and parameter choices, were evaluated to optimize dose model performance. Mean dose errors were less than 5% at all distances from the PTV, and mean absolute dose errors were on the order of 5%, but no more than 10%. Dose-volume histogram errors demonstrated good model performance above 25 Gy, but much larger errors were seen at lower doses. ANN-DM dose distributions showed excellent overall agreement with TPS dose distributions, and accuracy was substantially improved when each physicians treatment approach was taken into account by training their own dedicated models. In this manner, one could feasibly train ANN-DMs that could predict the dose distribution desired by a given physician for a given treatment site.
118 - J. Adam M. Cunha , I-Chow Hsu , 2009
Purpose: To determine whether alternative HDR prostate brachytherapy catheter patterns can result in improved dose distributions while providing better access and reducing trauma. Methods: Prostate HDR brachytherapy uses a grid of parallel needle p ositions to guide the catheter insertion. This geometry does not easily allow the physician to avoid piercing the critical structures near the penile bulb nor does it provide position flexibility in the case of pubic arch interference. On CT data from ten previously-treated patients new catheters were digitized following three catheter patterns: conical, bi-conical, and fireworks. The conical patterns were used to accommodate a robotic delivery using a single entry point. The bi-conical and fireworks patterns were specifically designed to avoid the critical structures near the penile bulb. For each catheter distribution, a plan was optimized with the inverse planning algorithm, IPSA, and compared with the plan used for treatment. Irrelevant of catheter geometry, a plan must fulfill the RTOG-0321 dose criteria for target dose coverage. Results: Thirty plans from ten patients were optimized. All non-standard patterns fulfilled the RTOG criteria when the clinical plan did. In some cases, the dose distribution was improved by better sparing the organs-at-risk. Conclusion: Alternative catheter patterns can provide the physician with additional ways to treat patients previously considered unsuited for brachytherapy treatment (pubic arch interference) and facilitate robotic guidance of catheter insertion. In addition, alternative catheter patterns may decrease toxicity by avoidance of the critical structures near the penile bulb while still fulfilling the RTOG criteria.
76 - Jianhui Ma , Dan Nguyen , Ti Bai 2021
Purpose: Radiation therapy treatment planning is a trial-and-error, often time-consuming process. An optimal dose distribution based on a specific anatomy can be predicted by pre-trained deep learning (DL) models. However, dose distributions are ofte n optimized based on not only patient-specific anatomy but also physician preferred trade-offs between planning target volume (PTV) coverage and organ at risk (OAR) sparing. Therefore, it is desirable to allow physicians to fine-tune the dose distribution predicted based on patient anatomy. In this work, we developed a DL model to predict the individualized 3D dose distributions by using not only the anatomy but also the desired PTV/OAR trade-offs, as represented by a dose volume histogram (DVH), as inputs. Methods: The desired DVH, fine-tuned by physicians from the initially predicted DVH, is first projected onto the Pareto surface, then converted into a vector, and then concatenated with mask feature maps. The network output for training is the dose distribution corresponding to the Pareto optimal DVH. The training/validation datasets contain 77 prostate cancer patients, and the testing dataset has 20 patients. Results: The trained model can predict a 3D dose distribution that is approximately Pareto optimal. We calculated the difference between the predicted and the optimized dose distribution for the PTV and all OARs as a quantitative evaluation. The largest average error in mean dose was about 1.6% of the prescription dose, and the largest average error in the maximum dose was about 1.8%. Conclusions: In this feasibility study, we have developed a 3D U-Net model with the anatomy and desired DVH as inputs to predict an individualized 3D dose distribution. The predicted dose distributions can be used as references for dosimetrists and physicians to rapidly develop a clinically acceptable treatment plan.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا