ﻻ يوجد ملخص باللغة العربية
Stereotactic body radiation therapy (SBRT) for pancreatic cancer requires a skillful approach to deliver ablative doses to the tumor while limiting dose to the highly sensitive duodenum, stomach, and small bowel. Here, we develop knowledge-based artificial neural network dose models (ANN-DMs) to predict dose distributions that would be approved by experienced physicians. Using dose distributions calculated by a commercial treatment planning system (TPS), physician-approved treatment plans were used to train ANN-DMs that could predict physician-approved dose distributions based on a set of geometric parameters (vary from voxel to voxel) and plan parameters (constant across all voxels for a given patient). Differences between TPS and ANN-DM dose distributions were used to evaluate model performance. ANN-DM design, including neural network structure and parameter choices, were evaluated to optimize dose model performance. Mean dose errors were less than 5% at all distances from the PTV, and mean absolute dose errors were on the order of 5%, but no more than 10%. Dose-volume histogram errors demonstrated good model performance above 25 Gy, but much larger errors were seen at lower doses. ANN-DM dose distributions showed excellent overall agreement with TPS dose distributions, and accuracy was substantially improved when each physicians treatment approach was taken into account by training their own dedicated models. In this manner, one could feasibly train ANN-DMs that could predict the dose distribution desired by a given physician for a given treatment site.
Tumor motion plays a key role in the safe delivery of Stereotactic Body Radiotherapy (SBRT) for pancreatic cancer. The purpose of this study was to use tumor motion data measured in patients to establish limits on motion magnitude for safe delivery o
Purpose: To develop a knowledge-based voxel-wise dose prediction system using a convolution neural network for high-dose-rate brachytherapy cervical cancer treatments with a tandem-and-ovoid (T&O) applicator. Methods: A 3D U-NET was utilized to outpu
Dose painting of hypoxic tumour sub-volumes using positron-emission tomography (PET) has been shown to improve tumour control in silico in several sites. Pancreatic cancer presents a more stringent challenge, given its proximity to critical organs-at
High dose-rate brachytherapy (HDRBT) is widely used for gynecological cancer treatment. Although commercial treatment planning systems (TPSs) have inverse optimization modules, it takes several iterations to adjust planning objectives to achieve a sa
The purpose of this work is to advance fair and consistent comparisons of dose prediction methods for knowledge-based planning (KBP) in radiation therapy research. We hosted OpenKBP, a 2020 AAPM Grand Challenge, and challenged participants to develop