ترغب بنشر مسار تعليمي؟ اضغط هنا

Solvation of Nonionic Poly(Ethylene Oxide) Surfactant Brij 35 in Organic and Aqueous-Organic Solvents

87   0   0.0 ( 0 )
 نشر من قبل Matija Tom\\v{s}i\\v{c}
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jure Cerar




اسأل ChatGPT حول البحث

Hypothesis: By combining the experimental small- and wide-angle x-ray scattering (SWAXS) method with molecular dynamics simulations and the theoretical complemented-system approach it is possible to obtain detailed information about the intra- and inter-molecular structure and dynamics of the solvation and hydration of the surfactant in organic and mixed solvents, e.g., of the nonionic surfactant Brij 35 (C12E23) in alcohols and aqueous alcohol-rich ternary systems. This first application of the complemented-system approach to the surfactant system will promote the use of this powerful methodology that is based on experimental and calculated SWAXS data in studies of colloidal systems. By applying high-performance computing systems, such an approach is readily available for studies in the colloidal domain. Experiments: SWAXS experiments and MD simulations were performed for binary Brij 35/alcohol and ternary Brij 35/water/alcohol systems with ethanol, n-butanol and n-hexanol as the organic solvent component at 25 {deg}C. Findings: We confirmed the presence of solvated Brij 35 monomers in the studied organic media, revealed their preferential hydration and discussed their structural and dynamic features at the intra- and inter-molecular levels. Anisotropic effective surfactant molecular conformations were found. The influence of the hydrophobicity of the organic solvent on the hydration phenomena of surfactant molecules was explained.



قيم البحث

اقرأ أيضاً

Classical molecular dynamics (MD) simulations and quantum chemical density functional theory (DFT) calculations have been employed in the present study to investigate the solvation of lithium cations in pure organic carbonate solvents (ethylene carbo nate (EC), propylene carbonate (PC) and dimethyl carbonate (DMC)) and their binary (EC-DMC, 1:1 molar composition) and ternary (EC-DMC-PC, 1:1:3 molar composition) mixtures. The results obtained by both methods indicate that the formation of complexes with four solvent molecules around Li+, exhibiting a strong local tetrahedral order, is the most favorable. However, the molecular dynamics simulations have revealed the existence of significant structural heterogeneities, extending up to a length scale which is more than five times the size of the first coordination shell radius. Due to these significant structural fluctuations in the bulk liquid phases, the use of larger size clusters in DFT calculations has been suggested. Contrary to the findings of the DFT calculations on small isolated clusters, the MD simulations have predicted a preference of Li+ to interact with DMC molecules within its first solvation shell and not with the highly polar EC and PC ones, in the binary and ternary mixtures. This behavior has been attributed to the local tetrahedral packing of the solvent molecules in the first solvation shell of Li+, which causes a cancellation of the individual molecular dipole vectors, and this effect seems to be more important in the cases where molecules of the same type are present. Due to these cancellation effects, the total dipole in the first solvation shell of Li+ increases when the local mole fraction of DMC is high.
We investigated the spontaneous deformation and fission of a tetradecane droplet containing palmitic acid (PA) on a stearyltrimethylammonium chloride (STAC) aqueous solution. In this system, the generation and rupture of the gel layer composed of PA and STAC induce the droplet deformation and fission.To investigate the characteristics of the droplet-fission dynamics, we obtained the time series of the number of the droplets, and confirmed that the number has a peak at a certain STAC concentration. Since the fission of the droplet should be led by the deformation, we analyzed four parameters which may relate to the fission dynamics from the spatio-temporal correlation of the droplet-boundary velocity. As a result, we found that the faster deformation would be the key factor for the fission dynamics.
We develop two new amphiphilic molecules that are shown to act as efficient surfactants for carbon nanotubes in non-polar organic solvents. The active conjugated groups, which are highly attracted to graphene nanotube surface, are based on pyrene and porphyrin. We show that relatively short (C18) carbon tails are insufficient to provide stabilization. As our ultimate aim is to disperse and stabilize nanotubes in siloxane matrix (polymer and crosslinked elastomer), both surfactant molecules were made with long siloxane tails to facilitate solubility and steric stabilization. We show that pyrene-siloxane surfactant is very effective in dispersing multi-wall nanotubes, while the porphyrin-siloxane is making single-wall nanotubes soluble, both in petroleum ether and in siloxane matrix.
We explore the possibility that hyperfine interaction causes the recently discovered organic magnetoresistance (OMAR) effect. Our study employs both experiment and theoretical modelling. An excitonic pair mechanism model based on hyperfine interactio n, previously suggested by others to explain magnetic field effects in organics, is examined. Whereas this model can explain a few key aspects of the experimental data, we, however, uncover several fundamental contradictions as well. By varying the injection efficiency for minority carriers in the devices, we show experimentally that OMAR is only weakly dependent on the ratio between excitons formed and carriers injected, likely excluding any excitonic effect as the origin of OMAR.
Conjugated polymer-based organic electrochemical transistors (OECTs) are being studied for applications ranging from biochemical sensing to neural interfaces. While new conjugated polymers are being developed that can interface digital electronics wi th the aqueous chemistry of life, the vast majority of high-performance, high-mobility organic transistor materials developed over the past decades are extremely poor at taking up biologically-relevant ions. Here we incorporate an ion exchange gel into an OECT, demonstrating that this structure is capable of taking up biologically-relevant ions from solution and injecting larger, more hydrophobic ions into the underlying polymer semiconductor active layer in multiple hydrophobic conjugated polymers. Using poly[2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene] (PBTTT) as a model semiconductor active layer and a blend of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIM TFSI) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the ion exchange gel, we demonstrate more than a four order of magnitude improvement in OECT device transconductance and a one hundred-fold increase in ion injection kinetics. We demonstrate the ability of the ion exchange gel OECT to record biological signals by measuring the action potentials of a Venus flytrap plant. These results show the possibility of using interface engineering to open up a wider palette of organic semiconductor materials as OECTs that can be gated by aqueous solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا