ﻻ يوجد ملخص باللغة العربية
This paper is a natural continuation of cite{Kr_20_2}, where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$. Here we study some properties of these processes such as the probability to pass through narrow tubes, higher summability of Greens functions, and so on. The results seem to be new even if the diffusion is constant.
This paper is a natural continuation of cite{Kr_20_2} and cite{Kr_21_1} where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in $L_{d+1}(ma
We prove the solvability of It^o stochastic equations with uniformly nondegenerate, bounded, measurable diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$. Actually, the powers of summability of the drift in $x$ and $t$ could be different. Our results
We consider It^o uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in $W^{1}_{d,loc}$, and the drift in $L_{d}$. We prove the unique strong solvability for any starting point and prove that as a function
This paper is a natural continuation of [8], where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$. Here we st
We prove It^os formula for the $L_{p}$-norm of a stochastic $W^{1}_{p}$-valued processes appearing in the theory of SPDEs in divergence form.